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• Superfluids: experiments and theory

. .

Heike Kamerlingh-Onnes using this Compressor Piotr Leonidovich Kapitza Jack Allen

hydrogen mixture of 0.2 mole 

fraction helium, maintained at 20 K, the gas 

. and his student

. Donald Missener

.

Nobel prize 1913

”for his investigations on the

properties of matter at low

temperatures which led, inter

alia, to the production of liq-

uid helium”.

K-O discovered in 1911

. superconductivity.

.

liquified He at T = 4.2K

in July 10, 1908.

K-O & coworkers in 1924

discovered density change at

T = 2.18K.

Keesom & Wolfke, 1928:

this is a phase transition

. He I ⇔ He II.

.

Nobel prize 1978

”for his basic inventions and

discoveries in the area of low-

temperature physics”. P.L.

Kapitza in Moscow discovered

and named in 1937

. superfluidity of 4He

independently discovered

superfluidity in PLK’s

Cambridge lab.
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Lev Davidovich Landau

. Nobel Prize, 1962

”for his pioneering theo-

ries for condensed matter,

especially liquid helium”.

In particular, he quantized

in 1941 the Tisza-1940

two-fluid model and sug-

gested Andronikashvilii’s

1946 experiment on oscil-

lating in He II discs.
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idity

Its period and damping measures densities

of superfluid, ρs and normal, ρs, components:

.
Andronikashvili experiment
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Here: S – entropy, T – temperature and

Fns is the mutual friction force
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Quantum mechanical description of He II
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• Superfluid Dynamics and Turbulence

Turbulence in a superfluid was predicted first by Richard Feynman in 1955 and

found experimentally (in counterflow 4He) by Henry Hall and Joe Vinen in 1956.

1.3.1 Normal fluid vs. superfluid at T → 0 limit:

– Normal fluid kinematic viscosity ν ̸= 0 vs. ν ≡ 0 in superfluids;

– Two scales in normal fluids: Outer scale L and dissipative micro-scale η ≪ L;

– Two additional scales in superfluids due to quantization of vortex lines:
⇓ vortex core diameter a0 ⇓ ⇓ inter-vortex distance ℓ ⇓ ⇓ Outer scale L ⇓

v rs
. /d m
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b
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h

−h
−2h 2h

In 4He a0 ≃ 1 Å, in 3He a0 ≃ 800 Å. Experimentally, in both 4He and 3He,Λ ≡ ln
( ℓ

a0

)
≃ 12 ÷ 15.
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• Hall-Vinen-Bekarevich-Khalatnikov coarse-grained two-fluid equations

In hydrodynamic region of scales R ≫ ℓ one can neglect the quantization of vortex lines and make use

of the coarse-grained two fluid equation for velocities of the superfluid and normal components us and

un, with densities ρs and ρn and pressures ps and pn

ρs

[∂ us

∂t
+ (us∇)us

]
−∇ps = −Fns , ps =

ρs
ρ
[p− ρn|us − un|2] , (1a)

ρn

[∂ un

∂t
+ (un∇)un

]
−∇pn = ρnν∆un + Fns , pn =

ρn
ρ
[p + ρs|us − un|2] , (1b)

coupled by the the mutual friction between superfluid and normal components of the liquid mediated by

quantized vortices which transfer momenta from the superfluid to the normal subsystem and vice versa:

Fns = −ρs{α′(us − un)× ωs + α ω̂s × [ωs × (us − un)]} ≈ α ρsωT
(us − un) , ω

T
= κL (1c)

Here we used for Fns a simple closure (approximation) [Ref.]
1 written in terms of the vortex-line density

L(r, t). Eqs (1) are very similar to the Navier-Stokes equation. Therefore in a theory of large-scale

superfluid turbulence, including wall-bounded (i.e. channel turbulent flow), we can use numerous tools,

developed in the theory of classical HD turbulence. The only essential difference is the mutual friction,

controlled by the vortex-line density L, dominated by small scales. Thus the classical models of channel

flows (involving only characteristics of large-scale eddies – mean velocity and Reynolds stress ⟨δviδvj⟩
profiles), should be accompanied by equation L(r, t).

An additional equation for the vortex-line density L(r, t) the subject of my talk.
1 V. S. L’vov, S. V. Nazarenko and G. E. Volovik, JETP Letters, v. 80, 535-539 (2004)
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• Closure problems in the Vinen equation and suggested resolution:

Consider Vinen-1957 phenomenological equation for L(t) for homogeneous counterflows:
dL(t)

dt
= P(t)−D(t) . (2a)

Production term P(t) ∝ α – the growth of L due to the extension of the vortex rings by mutual

friction, which is caused by the difference between the velocities of the normal and super components

(“the counterflow velocity” Vns.)

Decay term, D(t) ∝ α is again caused by the mutual friction due to fast moving normal fluid compo-

nents and is independent of Vns.

Dimensional reasoning:

P ⇒ Pcl = ακL2F (x) , D⇒ Dcl = ακL2G(x) , x = V 2
ns

/
κ2L . (2b)

Here F (x) and G(x) are dimensionless functions of the dimensionless argument x.

Earlier suggestions:

Pcl ⇒ P1 = αC1L3/2|Vns| , or Pcl ⇒ P2 = αC2LV 2
ns

/
κ . (3a)

Dcl = αCdecκL2 assuming that Dcl is independent of Vns . (3b)

Neither Vinen’s nor later experimental attempts succeeded to distinguish between P1 and P2.
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To resolve the closure uncertainty

we suggest to study the channel flow in which Pcl(y)

and Dcl(y) have nontrivial profiles. For that goal we

suggest inhomogeneous equation of motion for the

field L(r, t), which in the channel geometry ⇒
has the form ⇓

h

x
z

y

V
ns

∂L(y, t)

∂t
+

∂

∂y
Jcl(y, t) = P3(y, t)−Dcl(y, t) . (4a)

Here we have added a vortex-line density flux J (r, t), which we suggest to model as follows:

J cl(r, t) = −Cflux

(
α
/
2κ

)
∇V 2

ns . (4b)

We will show that none of the closures for the production term P1 and P2, given by Eqs.(3) are

correct. We propose yet a third form of P [corresponding to f (x) ∝ x3/2]:

Pcl ⇒ P3 = αCprod

√
LV 3

ns

/
κ2 , (4c)

which fits the data that are presented below significantly better than either of the equations (3).

We show that Eqs. (4) may serve as a basis for future studies of wall-bounded superfluid turbulence.
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• Starting from first principles: Analytical results

Using Biot-Savart equation for the quantized vortex lines supplemented by the mutual friction, Schwarz

derived the equation of motion for the length of the vortex-line segment δξ:

1

δξ

dδξ

dt
≈ αVns(s, t) · (s′ × s′′) . (5a)

Here s(ξ, t) is the coordinate of the quantized vortex lines parameterized by the arc-length ξ; s′ = ds/dξ,

s′′ = d2s/dξ2. The counterflow velocity Vns is

Vns = V n − V s , V s = V s
0 + V

BS
. (5b)

The super-fluid velocity V s includes the macroscopic potential part V s
0 , and the Biot-Savart velocity

V
BS
, defined by the entire vortex tangle configuration C

V
BS

=
κ

4π

∫
C

(s− s1)× ds1
|s− s1|3

= V s
LIA

+ V s
nl . (5c)

The logarithmically divergent (when s1 → s) integral (5c) can be regularized by using the vortex core

radius a0 and the mean vortex line curvature radius R = 1/S̃.

The main contribution to V
BS
, known as the “Local Induction Approximation” (LIA), originates from

integrating over scales between a0 and R, i.e. a0 6 |s1 − s| 6 R:

V s
LIA

= βs′ × s′′ , β ≡ (κ/4π) ln
(
R/a0

)
. (5d)

The non-local term V s
nl is produced by the rest of the vortex configuration, C ′, with |s1 − s| > R:

V s
nl =

κ

4π

∫
C′

(s− s1)× ds1
|s− s1|3

. (5e)
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Integrating Eq. (5a),

1

δξ

dδξ

dt
≈ αVns(s, t) · (s′ × s′′) , (5a)

over the vortex tangle in a fixed volume Ω residing in slices between y and y + δy, going over all x and

z one gets Eq. (4a),

∂L(y, t)

∂t
+

∂

∂y
J (y, t) = P(y, t)−D(y, t) , (4a)

for L(y, t) ≡
∫
CΩ

dξ/Ω with the following identification for the

Production term: P(y, t) =
α

Ω

∫∫∫
CΩ

dξ (V n − V s
0 − V s

nl) · (s′ × s′′) , (6a)

Decay term: D(y, t) =
αβ

Ω

∫∫∫
CΩ

dξ |s′′|2 = αβLS̃2 , and (6b)

Flux term: J (y, t) =
α

Ω

∫∫∫
CΩ

dξ Vns,xs
′
z . (6c)
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• Numerical simulations and comparison with analytical closures

where carried out in the channel geometry in the framework

of the vortex filament method (Biot-Savart equations for

the quantized vortex lines, supplemented by the mutual

friction force). Temperature T = 1.6K, Vn(0) = 1 cm/s,

h = 0.5mm, full slip boundary conditions for Vs.

h

x
z

y

V
ns

Example of the resulting vortex line configuration:
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Prescribed normal velocity profile –

red dash-dotted line

Resulting normalized counterflow velocity profile

V †
ns(y) – green dash line −−−,

Vortex line density profile L†(y), blue solid line.

y† = y/h , V † = V/
√

⟨V 2
ns⟩ , L† = κ2L/

⟨
V 2
ns

⟩
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– Comparison of the numerics to the analytical closure forms –Parabolic profile

Panel a: Comparison of the numerical data (black lines) to the

competing production forms of the Vinen equation: blue line –P1,

green line – P2, and red line – our suggestion P3.

Panel b: Comparison of the numerical data for decay with

the traditional analytical closure Eq.(3b),

Panel c: Comparison of the numerical data for the flux term

J with suggested closure Eq.(4b)
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- Comparison of the numerics to the analytical closures –Non-parabolic profile

Panel a: Comparison of the numerical data (black lines) to the

competing production forms of the Vinen equation: blue line –P1,

green line – P2, and red line – our suggestion P3.

Panel b: Comparison of the numerical data for decay with

the traditional analytical closure Eq.(3b),

Panel c: Comparison of the numerical data for the flux term

J with suggested closure Eq.(4b)
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• Summary and perspectives

– We consider inhomogeneous equation for the vortex line density

∂L
α∂t

−
Cflux

2κ

∂2V 2
ns

∂y2
=

Cprod

κ2

√
LV 3

ns −Cdec κL2 .

– The suggested closure for the production term using the counterflow velocity and the vortex line

density profiles can be considered as highly promising.

– However, the traditional closure for the decay term and suggested closure for the flux term are sen-

sitive to the counterflow velocity profile and work well for monotonic profiles, close to the parabolic

ones. In general case they require additional tangle characteristics.

– The first candidate is the tangle curvature; the tangle anisotropy also can be important.

– Much more work in this direction is required to develop a consistent theory of the wall-bounded

superfluid turbulence.
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