Passive separation of blood components in microfluidic devices — a simulation view

Timm Krüger, Rohan Vernekar

Flowing Matter Across the Scales 27 March 2015 Roma

Malaria

Deterministic lateral displacement

Volume exclusion

- Sensitive to particle size
- Irreversible trajectories, even at Re = 0

- Row shift *d*
- Gap size G
- Pillar radius *R*

Huang et al. (Science, 2004)

RBC membrane (1)

Strain energy density

$$w_{\mathcal{S}} = \frac{\kappa_{\mathcal{S}}}{12} \left(l_1^2 + 2l_1 - 2l_2 \right) + \frac{\kappa_{\alpha}}{12} l_2^2$$

 $κ_S:$ shear modulus $κ_α:$ extensional modulus $l_1, l_2:$ strain invariants

Skalak et al. (Biophys. J., 1973)

Bending energy density

$$w_B = \frac{\kappa_B}{2}(C - C_0)^2$$

 κ_B : bending modulus C: curvature

Helfrich (Z. Naturforsch. C, 1973)

Moduli from experiments:

- $\kappa_S = 5 \,\mu \text{N/m}$
- $\kappa_{\alpha} = 0.5 \,\mathrm{N/m}$
- $\kappa_B = 2 \cdot 10^{-19} \text{ N m}$

Dao et al. (J. Mech. Phys. Solids, 2003) Evans (Biophys. J., 1983)

RBC membrane (2)

Method overview

- Fluid solver: LBM (Eulerian)
- Membrane solver: FEM (Lagrangian)
- Fluid-membrane coupling: IBM

RBC trajectories

Particle deformability quantified by capillary number

$$Ca = \frac{\sigma r}{\kappa_S}$$

 σ : stress on RBC surface (due to applied pressure drop)

RBC trajectories

Particle deformability quantified by capillary number

$$Ca = \frac{\sigma r}{\kappa_S}$$

 σ : stress on RBC surface (due to applied pressure drop)

Main observation

Separation by deformability possible

"Phase space" for RBC separation

- Critical separation line: $d_{cr}(Ca) \Leftrightarrow Ca_{cr}(d)$
- Can choose d to separate particle species with given Ca_1 and Ca_2

Effective RBC size

increasing Ca

- Define effective RBC diameter D_{\perp}
- Take largest extension during passage

Key mechanism for separation

Apparent lateral RBC extension during passage

TK, Holmes, Coveney. Biomicrofluidics 8 (2014)

What happens at higher volume fractions?

Trajectories for denser suspensions (1)

Trajectories for denser suspensions (1)

Trajectories for denser suspensions (1)

Trajectories for denser suspensions (2)

Trajectories for denser suspensions (2)

Trajectories for denser suspensions (2)

Displacement failures

Summary

- Ultimate goal: smart geometries for passive separation ⇒ disease detection
- Here: deformability-based separation of RBCs
- Current problem: can it work at high volume fraction? avoid dilution

Conference announcement

Home

Important dates

Abstract submission

Invited speakers &

Fees & registration

programme

Travel & visa

Proceedings

Recent DSEDs

Welcome	to I	DSFD	2015
---------	------	------	------

We are delighted to host the 24th Discrete Simulation of Fluid Dynamics (DSFD) conference in Edinburgh on 13th-17th July 2015. The venue is <u>The Royal Society of Edinburgh</u> @.

The local organisation is based at <u>The University of Edinburgh</u> and <u>University of Strathclyde</u> (contact local organisers at <u>dsfd2015-info@ed.ac.uk</u>).

Join the DSFD mailing list of and follow us on Twitter to receive conference updates: @DSFD Conference

Important notice: Edinburgh will be extremely busy during the conference. Please consider reserving accommodation now, even if unsure whether you will attend - most providers allow cancellation at no cost.

http://www.dsfd2015.ed.ac.uk/home