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Introduction

Calanoid copepods are ubiquitous in brackish and
marine ecosystems

= A major component of the plankton community
m Considerable effort to understand their ecology
m Swimming behavior mediates:

> How they exploit their environment
» How they interact with other organisms

Copepods live in a constantly flowing environment

m Generally advected by large eddies but can respond
actively to the ambient flow

m No experimental results on their small-scale
response to turbulence

m Hypothesis: copepods can control the direction
and magnitude of motion imposed by small-scale
turbulent transport
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= A major component of the plankton community
m Considerable effort to understand their ecology
m Swimming behavior mediates:

> How they exploit their environment
» How they interact with other organisms

Copepods live in a constantly flowing environment

m Generally advected by large eddies but can respond
actively to the ambient flow

m No experimental results on their small-scale
response to turbulence

m Hypothesis: copepods can control the direction
and magnitude of motion imposed by small-scale
turbulent transport

Obtaining three-dimensional Lagrangian information

m We need a large number of long trajectories for robust statistical analysis

m No standard technique to recover the position information of moving animals
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Swimming dynamics

m Velocity magnitude of living copepods
exceeds that of inert particles ...

m ... but varies between genders: males
have a more active motility pattern

m Very low intensity of turbulence does
not trigger significant response

m The behavioral response depends on
turbulence intensity

Solid lines: living; Dashed lines: dead
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m Velocity magnitude of living copepods
exceeds that of inert particles ...

m ... but varies between genders: males
have a more active motility pattern

m Very low intensity of turbulence does
not trigger significant response

m The behavioral response depends on
turbulence intensity

Solid lines: living; Dashed lines: dead

800 L L L
——Males
——Females
S 600- —Dead L
=
g
© 4004 r
2
12}
E 200 +
0 T T T
0 250 350

0 150
Rotational speed (rpm)



Swimming dynamics
Results Trajectory dimorphism
Motion strategy

Results

Swimming dynamics

Acceleration (mm/s?)

[ 50 100 150 200 250 300 m Behavior contributes SUbStantia”y to the dynamics
[ IaEEaaaasa— | .
of copepods in turbulent flows

m The contribution of behavior reduces as flow
motion increases ...

m ... but regains significance after a moderate level
m Copepods adjust their behavior and swimming
effort according to the flow

m Suggests adaptation to optimize trade-offs between
gains and costs
> Gains: retaining the ability to carry out behavioral
processes and interactions
> Costs: energy expenditure and hydrodynamic
conspicuousness

A. Living males B. Inert
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m ... but regains significance after a moderate level
m Copepods adjust their behavior and swimming
effort according to the flow

m Suggests adaptation to optimize trade-offs between
gains and costs
> Gains: retaining the ability to carry out behavioral
processes and interactions
> Costs: energy expenditure and hydrodynamic
conspicuousness

A. Living males B. Inert

An adaptive behavioral mechanism

m To retain swimming efficiency in turbulent flows

m To improve survival and mating performance in a
complex and dynamic environment
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Motion strategy

Box-counting dimension

m In species that produce pheromones for mating:

> Males and females have distinct motility patterns
> A strategy to increase encounter rate
> Previous measurements conducted in still water

m Turbulence cancels gender-specific differences in

swimming complexity

At a substantial intensity of turbulence, trajectory
geometry resembles that of inert particles

A. Males B. Females
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Motion strategy determines:
> The probability of interaction with other
organisms

» How individuals explore and exploit their
dilute environment

An optimized trade-off between:

> Beneficial encounters with resources and
mates

> Dangerous meetings with predators

In calm water and weak to moderate
turbulence: multifractal random walk

m At substantial turbulence intensities:
monofractal superdifusive motion
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Motion strategy determines:
> The probability of interaction with other
organisms

» How individuals explore and exploit their
dilute environment

An optimized trade-off between:

> Beneficial encounters with resources and
mates

> Dangerous meetings with predators

In calm water and weak to moderate
turbulence: multifractal random walk

m At substantial turbulence intensities:
monofractal superdifusive motion

Turbulence cancels innate movement strategies

m Effects on geometry complexity

m Altered dispersive properties of motion
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m Motion strategies are inefficient in turbulent
environments ...
m ... but swift movements may matter more

> To race up pheromone trails
> To flee from predators
> To catch a nearby prey

m Interaction outcome and success depend on:

» Copepod perception distance
> Relative velocity between two organisms

m Copepods provide additional effort when
turbulence is significant

A compensatory response to the increase in flow velocity

m A behavioral adaptation to retain swimming efficiency in energetic environments
m Other physical processes or behavioral traits may increase encounter rates
> Flow-driven preferential concentrations

> Behavior-mediated aggregation and retention mechanisms in estuaries

m Variability of turbulence: possible windows for motion strategies
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