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Introduction

Calanoid copepods are ubiquitous in brackish and
marine ecosystems

A major component of the plankton community

Considerable e�ort to understand their ecology

Swimming behavior mediates:

I How they exploit their environment

I How they interact with other organisms

Copepods live in a constantly �owing environment

Generally advected by large eddies but can respond
actively to the ambient �ow

No experimental results on their small-scale
response to turbulence

Hypothesis: copepods can control the direction
and magnitude of motion imposed by small-scale
turbulent transport

Obtaining three-dimensional Lagrangian information

We need a large number of long trajectories for robust statistical analysis

No standard technique to recover the position information of moving animals
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Velocity magnitude of living copepods
exceeds that of inert particles ...

... but varies between genders: males
have a more active motility pattern

Very low intensity of turbulence does
not trigger signi�cant response

The behavioral response depends on
turbulence intensity

Solid lines: living; Dashed lines: dead
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Behavior contributes substantially to the dynamics
of copepods in turbulent �ows

The contribution of behavior reduces as �ow
motion increases ...

... but regains signi�cance after a moderate level

Copepods adjust their behavior and swimming
e�ort according to the �ow

Suggests adaptation to optimize trade-o�s between
gains and costs

I Gains: retaining the ability to carry out behavioral
processes and interactions

I Costs: energy expenditure and hydrodynamic
conspicuousness

A. Living males B. Inert

An adaptive behavioral mechanism

To retain swimming e�ciency in turbulent �ows

To improve survival and mating performance in a
complex and dynamic environment
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In species that produce pheromones for mating:

I Males and females have distinct motility patterns

I A strategy to increase encounter rate

I Previous measurements conducted in still water

Turbulence cancels gender-speci�c di�erences in
swimming complexity

At a substantial intensity of turbulence, trajectory
geometry resembles that of inert particles

A. Males B. Females
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A. Males B. Females

Motion strategy determines:

I The probability of interaction with other
organisms

I How individuals explore and exploit their
dilute environment

An optimized trade-o� between:

I Bene�cial encounters with resources and
mates

I Dangerous meetings with predators

In calm water and weak to moderate
turbulence: multifractal random walk

At substantial turbulence intensities:
monofractal superdifusive motion

Turbulence cancels innate movement strategies

E�ects on geometry complexity

Altered dispersive properties of motion
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Motion strategies are ine�cient in turbulent
environments ...

... but swift movements may matter more

I To race up pheromone trails

I To �ee from predators

I To catch a nearby prey

Interaction outcome and success depend on:

I Copepod perception distance

I Relative velocity between two organisms

Copepods provide additional e�ort when
turbulence is signi�cant

A compensatory response to the increase in �ow velocity

A behavioral adaptation to retain swimming e�ciency in energetic environments

Other physical processes or behavioral traits may increase encounter rates

I Flow-driven preferential concentrations

I Behavior-mediated aggregation and retention mechanisms in estuaries

Variability of turbulence: possible windows for motion strategies
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