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Motivations

NASA Visualization

low-intensity microstructure. Turbulent dif-
fusivity values for the central Brazil Basin
were about 0.1 3 1024 m2 s21. We ob-
served just a slight enhancement in the
mixing over the rise within 100 m of the
bottom, most likely a result of boundary
layer turbulence. These small dissipation
estimates were surprising in that a bottom-
intensified deep western boundary current
flows above the rise (albeit at speeds of only
about 2 cm s21) that has been implicated in
mixing Brazil Basin waters (13). In contrast,
turbulent dissipation rates were elevated
one to two orders of magnitude above the
rough flanks of the MAR, particularly with-
in 300 m of the bottom.

We repeatedly sampled one spur of the
MAR with the HRP between 3 and 20
February, 1996, a period encompassing both
spring and neap tides. Turbulent diffusivity

values in this region were consistently
greater than 1024 m2 s21 within 300 m of
the bottom; within 150 m, some values
exceeded 1023 m2 s21 (Fig. 3). This region
of rough topography was chosen as the trac-
er release site. Approximately 110 kg of SF6
was released during an 8-day period on a
density surface at about 4010 m depth near
21°409S, 18°259W (Fig. 1) (14). The initial
root-mean-square vertical spread of the
tracer relative to the target density surface,
resulting from shifts in sensor calibration
between tows, was about 9 m. Tracer con-
centration broadened in the 11 days after
injection (Fig. 4). Application of a diffusion
model (15) returned a diapycnal diffusivity
value of 0.5 3 1024 6 0.5 3 1024 m2 s21.
On the basis of the 39 HRP stations made
in this region, we estimate that K between
3960 and 4060 m was 0.3 3 1024 to 0.6 3

1024 m2 s21 (95% confidence bounds). Al-
though a K value close to zero cannot be
ruled out by the tracer data, the best esti-
mate is consistent with those from the
HRP.

The microstructure data show that mix-
ing was enhanced throughout much of the
water column in regions with rough topog-
raphy. Turbulence supported directly by
bottom stress is limited to boundary layers
that are typically only tens of meters high.
That mixing occurs remote from the bot-
tom implicates wave processes that can
transport energy up from the bottom.
Steady and time-dependent bottom cur-
rents flowing over undulating bathymetry
can generate internal waves that propagate
up into the water column (16). Subsequent
instability and breaking of such waves
would provide an energy source for the tur-
bulent mixing. Consistent with this idea,
enhanced fine-scale shear and strain (17)
were observed above rough bathymetry. We
propose that the energy source for the inter-
nal waves supporting the mixing near the
MAR is the barotropic tides impinging on
the rough bathymetry of the ridge. (Mean

Fig. 1. Distribution of HRP
stations (triangles) in the Bra-
zil Basin of the South Atlantic
Ocean. Isobaths greater than
2000-m depth are depicted
with a contour interval of
1000 m. The expanded scale
plot to right shows the ship
tracks during injection of the
SF6 tracer (solid lines). The
dashed lines mark the sam-
pling tracks of the initial trac-
er survey.
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Fig. 3. Profiles of average cross-isopycnal diffu-
sivity versus depth as a function of position rel-
ative to a spur of the MAR (whose bathymetry is
shown versus latitude). Diffusivity profiles have
been offset horizontally to roughly correspond to
their physical position relative to the spur and are
plotted on a logarithmic axis. The tick marks and
color scheme denote decadal intervals, and the
vertical reference lines denote K 5 1025 m2 s21.
The 95% confidence intervals are roughly 650%
of the depicted estimates. The horizontal line
marks the average depth at which the SF6 tracer
was injected.
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Fig. 2. Depth-longitude section of cross-isopycnal diffusivity in the Brazil Basin inferred from velocity
microstructure observations. Note the nonuniform contour scale. Microstructure data from the two
quasi-zonal transects have been combined without regard to latitude. The underway bathymetric data
to 32°W is from the eastward track, the balance comes from the westward track. The white line marks
the observed depth of the 0.8°C surface.
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K. L. Polzin et al. (1997). Science

I Geophysical Flows: Vortices and waves coexist and prevail over different scales in
the atmosphere and ocean.

I Theoretical: rotation and stratification break Kolmogorov theory. Dimensional
analysis does not yield a unique result because of the introduction of new timescales,
corresponding to the propagation of internal waves:

τNL =
L

U
, τW =

1

f
,

1

N
,

1

σ(k)

Role of vortices and waves in the idealized framework of rotating-stratified turbulence?



Idealized Rotating-Stratified Turbulence

Boussinesq Equations, Cubic domain, periodic BC:

∂tu + u · ∇u = −∇P − 2Ωez × u− Nθez + ν∆u + F,

∂θ + u · ∇θ = Nuz + κ∆θ,

∇ · u = 0.
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FIG. 2. Top and middle: Temporal evolution of the total helicity
HV in several runs with different values of Fr, Ro, and N , as given
by the labels. Note that the time averaged value of HV is negative,
indicating negative helicity prevails in these runs even when the initial
value of the helicity is positive. On top are runs with the same Fr
whereas in the middle, runs with N/f = 1 but with different Fr are
shown. Bottom: Time evolution of the kinetic enstrophy ZV in runs
with Fr ≈ 0.01 and N = 12.56, and with different values of Ro. In
all panels, oscillations are due to gravity waves, with their period
proportional to N .

ZV , with slightly smaller values. Note that in all quantities the
oscillations are due to gravity waves because of the fact that
our initial conditions are chosen to be unbalanced, and their
periods are proportional to N . Across all runs, the maximum of
ZV varies from 30 (for weak waves) to ≈ 2.5, corresponding to
the smallest Froude number considered. The time to reach this
maximum varies from 1.5 to 3.2 τNL. The growth of enstrophy
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FIG. 4. (Color online) Variations of r = −〈H⊥〉⊥,t /〈w∂zθ〉⊥,t

[see Eq. (9)] with vertical layers of index zn; n ∈ [1,256] is the index
of the vertical plane, and the data are temporally averaged around
the peak of enstrophy. The horizontal lines give the geostrophic
balance prediction. Both runs are performed on grids of 2563

points with Re ≈ 4 × 103,Fr = 0.0127, and ReFr2 ≈ 0.672. Top:
N/f = 1.5,ReRo2 ≈ 1.51. Bottom: N/f = 16.7,ReRo2 ≈ 186.6. In
the latter case, the prediction stemming from assuming weak
nonlinearities no longer applies.

is typical of a turbulent flow, and is due to vortex stretching.
The growth in the presence of waves is weaker, a characteristic
of a wave turbulence regime.

The overall structures in this type of flows are shown in
Fig. 3, which displays the volume rendering of buoyancy
right after the peak of enstrophy for a run with Fr = 0.1 and
N/f = 4 (left), and for a run with Fr = 0.025 and N/f = 2
(right), both performed on grids of 5123 points and with
identical initial Reynolds numbers. The 3D rendering puts
in evidence the stratification and the presence of large-scale
layers; small-scale features with curved ribbons also occur for
the run with smaller stratification. The run with Fr = 0.1 shows
strong turbulent fluctuations, whereas the run with Fr = 0.025
is smoother, with weaker small-scale fluctuations.

We now examine the relation given by Eq. (9). In Fig. 4
is given the variation with the vertical index zn (i.e., the

FIG. 3. (Color online) Visualization of the buoyancy θ in runs with 5123 grids, for Re ≈ 10 000, Fr = 0.1, and Ro = 0.4 (left) and for the
same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and light (green) strata represent
respectively positive and negative variations in θ around its mean, with sizable fluctuations and structuring, and with more turbulent eddies at
higher Froude number.

033016-6

Fr = 0.1, Ro = 0.4

Non-dimensional numbers

I Stratification: Fr = U
NL

I Rotation: Ro = U
fL
, (f = 2Ω)

1R. Marino et al. (2013a). Phys. Rev. E



Idealized Rotating-Stratified Turbulence

Kinetic energy spectrum and fluxes, DNS (10243, Re ≈ 103, kf = 40) of stratified flows
with or without rotation1:

Fast growth of large scales in rotating stratified turbulence
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Fig. 4: (Colour on-line) Isotropic kinetic-energy spectra (top)
and normalized total energy fluxes (bottom) for three runs on
grids of 10243 points, with Re≈ 103, and Fr and Ro as indicated
by the labels. A −5/3 slope is given as a reference. The run
with pure stratification has a flat spectrum for k < kF . In the
inset are the kinetic-energy spectra: isotropic as a function of k,
parallel as a function of k‖, and perpendicular as a function of
k⊥) at a later time in the run with N/f = 2. Note the range
of wave numbers with negative flux for k < kF for some of the
runs, and that the run with pure stratification has flux close
to zero in the same range.

this can be easily verified as the dispersion relation of
inertial-gravity waves in (4) reduces to ωk =±N ; then, the
resonant condition ωk+ωp+ωq = 0 can never be fulfilled.
The generalization of this argument to the range 1/2!
N/f ! 2 is straightforward and can be found in [27]. The
absence of resonant interactions in this range may also
help coupling 2D and 3D modes (which, for the purely
rotating case, may be only weakly coupled or uncoupled,
see [34]), and can explain the enhanced transfer from 3D
to 2D modes observed in fig. 3. In that range, where
resonances are non-existent, only non-linear interactions
between eddies can operate, and they efficiently produce
an inverse cascade, unimpeded by waves.
Finally, in fig. 4, we show the isotropic kinetic-energy

spectra as well as the total energy flux at t/τNL = 26 in
several runs with 10243 grid points, kF ≈ 40, and N/f =
2, 4, and ∞ (no rotation). We also show a detail of
the isotropic, perpendicular, and parallel kinetic-energy

spectra for the run withN/f = 2 in the inset. The run with
N/f = 2 has larger scales (evidenced by the peak of the
energy spectrum at a smaller k), and in the case with pure
stratification the spectrum at large scales has flattened
out, a feature already observed by several authors and
attributed to the layering of the flow [20], as also observed
in the visualization (see fig. 1). Such a flat spectrum has
been obtained for purely stratified flows using, as a model
for the layered structure, a superposition of delta functions
in the vertical [20].
In the two runs with rotation, the inverse cascade

is present and it follows a clear −5/3 law, as would
be the case for a two-dimensional fluid [6]. However, it
cannot be discarded that this slope may be dependent on
the properties of the forcing, as for the purely rotating
case it has been observed that the energy scaling in the
inverse-cascade range depends, e.g., on the anisotropy of
the forcing [9] (note that in the present study we use
isotropic forcing). At late time, in the runs with moderate
N/f , there is a clear equipartition between the k⊥ and
k‖ dependencies, with all spectra displaying a ∼ k−5/3
scaling.
The spectra at small scale (k > kF ) are steep, but insuf-

ficient resolution precludes us from making any assessment
as to what is the scaling law at these wave numbers. We
simply note that in the purely stratified case, there is more
energy at small scale than when rotation is present: at a
fixed energy input rate, if a measurable amount of energy
goes to large scales, less can be transferred to small scales.
The fluxes confirm what is observed in the energy

spectra. Again, the lack of adequate scale separation (i.e.,
the separation between kF and kmax = np/3) at small
scale leads to positive by not quite constant energy fluxes.
However, there is a measurable transfer to small scales
(represented by the positive flux), the lesser the stronger
the rotation. At large scales (k < kF ), the energy flux
is negative and tending toward being constant, specially
in the run with N/f = 2 . This range with negative
flux is shorter in the run with N/f = 4 (and smaller in
amplitude), while the purely stratified flow has only a
very short range of wave numbers with almost negligible
negative flux. As is apparent from the results shown above,
this small flux is not enough to give any measurable growth
in the overall scale of structures or in kinetic energy.
Similar results are obtained for the spectra and fluxes in
all the runs with grids of 5123 points and kF ≈ 22.

Conclusion. – We have shown, using 5123 and 10243

simulations of the incompressible Boussinesq equations,
that the inverse energy cascade in rotating and stably
stratified turbulence is non-monotonic in N/f , and that
the combination of rotation with weak stratification
(for 1/2!N/f ! 2) results in a faster growth of large
scales than in purely rotating flows. This results from an
enhanced coupling between 3D and 2D modes (associated
with a suppression of resonant interactions), which allows
for faster transfer of energy towards 2D motions.
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Fig. 4: (Colour on-line) Isotropic kinetic-energy spectra (top)
and normalized total energy fluxes (bottom) for three runs on
grids of 10243 points, with Re≈ 103, and Fr and Ro as indicated
by the labels. A −5/3 slope is given as a reference. The run
with pure stratification has a flat spectrum for k < kF . In the
inset are the kinetic-energy spectra: isotropic as a function of k,
parallel as a function of k‖, and perpendicular as a function of
k⊥) at a later time in the run with N/f = 2. Note the range
of wave numbers with negative flux for k < kF for some of the
runs, and that the run with pure stratification has flux close
to zero in the same range.

this can be easily verified as the dispersion relation of
inertial-gravity waves in (4) reduces to ωk =±N ; then, the
resonant condition ωk+ωp+ωq = 0 can never be fulfilled.
The generalization of this argument to the range 1/2!
N/f ! 2 is straightforward and can be found in [27]. The
absence of resonant interactions in this range may also
help coupling 2D and 3D modes (which, for the purely
rotating case, may be only weakly coupled or uncoupled,
see [34]), and can explain the enhanced transfer from 3D
to 2D modes observed in fig. 3. In that range, where
resonances are non-existent, only non-linear interactions
between eddies can operate, and they efficiently produce
an inverse cascade, unimpeded by waves.
Finally, in fig. 4, we show the isotropic kinetic-energy

spectra as well as the total energy flux at t/τNL = 26 in
several runs with 10243 grid points, kF ≈ 40, and N/f =
2, 4, and ∞ (no rotation). We also show a detail of
the isotropic, perpendicular, and parallel kinetic-energy

spectra for the run withN/f = 2 in the inset. The run with
N/f = 2 has larger scales (evidenced by the peak of the
energy spectrum at a smaller k), and in the case with pure
stratification the spectrum at large scales has flattened
out, a feature already observed by several authors and
attributed to the layering of the flow [20], as also observed
in the visualization (see fig. 1). Such a flat spectrum has
been obtained for purely stratified flows using, as a model
for the layered structure, a superposition of delta functions
in the vertical [20].
In the two runs with rotation, the inverse cascade

is present and it follows a clear −5/3 law, as would
be the case for a two-dimensional fluid [6]. However, it
cannot be discarded that this slope may be dependent on
the properties of the forcing, as for the purely rotating
case it has been observed that the energy scaling in the
inverse-cascade range depends, e.g., on the anisotropy of
the forcing [9] (note that in the present study we use
isotropic forcing). At late time, in the runs with moderate
N/f , there is a clear equipartition between the k⊥ and
k‖ dependencies, with all spectra displaying a ∼ k−5/3
scaling.
The spectra at small scale (k > kF ) are steep, but insuf-

ficient resolution precludes us from making any assessment
as to what is the scaling law at these wave numbers. We
simply note that in the purely stratified case, there is more
energy at small scale than when rotation is present: at a
fixed energy input rate, if a measurable amount of energy
goes to large scales, less can be transferred to small scales.
The fluxes confirm what is observed in the energy

spectra. Again, the lack of adequate scale separation (i.e.,
the separation between kF and kmax = np/3) at small
scale leads to positive by not quite constant energy fluxes.
However, there is a measurable transfer to small scales
(represented by the positive flux), the lesser the stronger
the rotation. At large scales (k < kF ), the energy flux
is negative and tending toward being constant, specially
in the run with N/f = 2 . This range with negative
flux is shorter in the run with N/f = 4 (and smaller in
amplitude), while the purely stratified flow has only a
very short range of wave numbers with almost negligible
negative flux. As is apparent from the results shown above,
this small flux is not enough to give any measurable growth
in the overall scale of structures or in kinetic energy.
Similar results are obtained for the spectra and fluxes in
all the runs with grids of 5123 points and kF ≈ 22.

Conclusion. – We have shown, using 5123 and 10243

simulations of the incompressible Boussinesq equations,
that the inverse energy cascade in rotating and stably
stratified turbulence is non-monotonic in N/f , and that
the combination of rotation with weak stratification
(for 1/2!N/f ! 2) results in a faster growth of large
scales than in purely rotating flows. This results from an
enhanced coupling between 3D and 2D modes (associated
with a suppression of resonant interactions), which allows
for faster transfer of energy towards 2D motions.
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Transition from upscale to downscale energy cascade as rotation weakens (Ro increases).

1R. Marino et al. (2013b). Europhys. Lett.



Normal modes of the linearized equations

Linearized Boussinesq dynamics in Fourier space2:

Ẋ(k) = L(k)X(k), with X(k) = (ûx(k), ûy (k), ûz(k), θ̂(k))T

Sp L(k) = {0, iσ(k),−iσ(k)}, with σ(k) = k−1
√

f 2k2
‖ + N2k2

⊥.

Eigenmodes

I Two inertia-gravity wave modes X±(k):

L(k)X±(k) = ±iσ(k)X±(k).

I One slow mode X0(k) with zero linear frequency:

L(k)X0(k) = 0.

Orthonormal basis:

X(k) = A0(k)X0(k) + A−(k)X−(k) + A+(k)X+(k),

Xr (k)†Xs(k) = δrs .

2C. E. Leith (1980). J. Atmos. Sci. P. Bartello (1995). J. Atmos. Sci.



Properties of the normal modes

Slow modes and balanced motion

I For rotating-stratified flows: The slow modes are in hydrostatic balance:
∂zP = −ρg ,
and geostrophic balance: ∇⊥P = −2Ω× u.

I For stratified flows, the slow modes are not in hydrostatic balance, unless k⊥ = 0
(vertically sheared horizontal flow (VSHF) modes).

Slow modes and potential enstrophy

Potential vorticity Π = f ∂zθ−Nωz +ω ·∇θ is a Lagrangian invariant: ∂tΠ + u ·∇Π = 0.
Potential enstrophy

∫
Π2 is a global invariant. Quadratic part Γ2:

Γ2 =
1

2

∫
(f ∂zθ − Nωz)2 =

1

2

∑
k∈B

k2σ(k)2|A0(k)|2

For stratified flows, the only modes which carry PV have k⊥ 6= 0.

I 2D: Enstrophy is positive definite.

I 3D HIT: Helicity is not sign definite.

I Here: Potential enstrophy is positive, but degenerate.



Wave and vortices: global analysis
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Wave and vortices: spectral analysis
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Absolute Equilibrium

Introduce canonical probability measure based on the invariants of the system3:
ρ = Z−1 exp(−βE − αΓ2)

I 2D Turbulence: negative temperature β, infrared divergence, inverse cascade.

I 3D Turbulence: only positive temperatures β, ultraviolet divergence, direct cascade.

Rotating-Stratified flows at absolute equilibrium4:
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I β > 0, energy equipartition (ultraviolet catastrophe), like 3D turbulence, which
points at a downscale cascade of energy.

I In fact, the dynamics remains in the vicinity of a slow manifold.
3T. D. Lee (1952). Q. Appl. Math. R. H. Kraichnan (1967). Phys. Fluids
4P. Bartello (1995). J. Atmos. Sci. see M. L. Waite and P. Bartello (2004). J. Fluid Mech. for the purely stratified case.



Restricted partition function

ε1 ε− ε2 ε+
ε

f (ε)

Metastable states (local minima of the free
energy f (ε)): restrict the integral defining
the partition function to a subset Λ′ of
phase space5.

Absolute equilibrium:

Z(β) =

∫
Λ

e−βNh(x)µ(dx),

=

∫ +∞

0

e−βNεΩ(ε)dε,

∼ e−Nφ(β),

φ(β) = min
ε∈R+

(βε− s(ε)) = βε1 − s(ε1).

Restricted equilibrium:

Z ′(β) =

∫
Λ′
e−βNh(x)µ(dx),

=

∫ ε+

ε−
e−βNεΩ(ε)dε,

∼ e−Nφ′(β),

φ′(β) = min
ε∈[ε−,ε+]

(βε− s(ε)) = βε2 − s(ε2).

5O. Penrose and J. L. Lebowitz (1971). J. Stat. Phys. O. Penrose and J. L. Lebowitz (1979). In: Fluctuation Phenomena. Ed. by E. W. Montroll
and J. L. Lebowitz. Amsterdam: North-Holland



Restricted partition function6

I Rotating-Stratified flows at restricted equilibrium (slow manifold only)
Convergence condition: β + α(f 2k2

‖ + N2k2
⊥) > 0.
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β < 0 regime (I): infrared divergence of the restricted equilibrium energy spectrum,
like in 2D turbulence, which points at the existence of an inverse cascade.

I Purely stratified flows at restricted equilibrium
Convergence condition: β + αN2k2

⊥ > 0.
β > 0 (regimes (II) and (III)): forward energy cascade. Because of the VSHF modes
(k⊥ = 0).

6C. Herbert et al. (2014). J. Fluid Mech.



Restricted partition function6

I Rotating-Stratified flows at restricted equilibrium (slow manifold only)
Convergence condition: β + α(f 2k2
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⊥) > 0.
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β < 0 regime (I): infrared divergence of the restricted equilibrium energy spectrum,
like in 2D turbulence, which points at the existence of an inverse cascade.

I Purely stratified flows at restricted equilibrium
Convergence condition: β + αN2k2
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β > 0 (regimes (II) and (III)): forward energy cascade. Because of the VSHF modes
(k⊥ = 0).

6C. Herbert et al. (2014). J. Fluid Mech.



VSHF modes in the DNS

Vertically sheared horizontal flows: inertial waves (σ(k) = f ), uz = 0. In the stratified
case they become slow modes: characteristic time = eddy turnover time.
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In the stratified case, some energy is transferred to the large horizontal scales, but not by
a cascade process.



Role of the buoyancy Reynolds number

All the runs above have Reb = ReFr 2 ∼ 1.
In the inverse cascade regime, Reb is necessarily limited.
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Summary

What is the role of vortices and waves in the energy cascade of rotating-stratified
turbulence?

Conclusions

I Vortical modes dominate our DNS at low Reb.

I They undergo an inverse cascade when rotation is strong enough.

I Statistical Mechanics in the restricted ensemble supports the idea that the inverse
cascade is due to the slow modes.

I It also explains why there is not inverse cascade in the absence of rotation and
points to the role of vertically sheared horizontal modes.

Degenerate inviscid invariant:

I Inverse cascade when there is timescale separation.

I Direct cascade otherwise.





Bartello, P. (1995). J. Atmos. Sci. 52, pp. 4410–4428.
Herbert, C. et al. (2014). J. Fluid Mech. 758, pp. 374–406.
Kraichnan, R. H. (1967). Phys. Fluids 10, pp. 1417–1423.
Lee, T. D. (1952). Q. Appl. Math. 10, pp. 69–74.
Leith, C. E. (1980). J. Atmos. Sci. 37, pp. 958–968.
Marino, R. et al. (2013a). Phys. Rev. E 87.3, p. 033016.
— (2013b). Europhys. Lett. 102, p. 44006.
Penrose, O. and J. L. Lebowitz (1971). J. Stat. Phys. 3.2, pp. 211–236.
— (1979). In: Fluctuation Phenomena. Ed. by E. W. Montroll and J. L. Lebowitz. Amsterdam: North-Holland. Chap. 5, p. 293.
Polzin, K. L. et al. (1997). Science 276.5309, pp. 93–96.
Waite, M. L. and P. Bartello (2004). J. Fluid Mech. 517, pp. 281–308.



α
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−αk2
min min(N2, f 2)

−αk2
max max(N2, f 2)

Accessible thermodynamic space for rotating-stratified flows, waves (red) and slow
manifold (blue).
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