Vortices and waves in the energy cascade of geophysical turbulence

Corentin Herbert Weizmann Institute of Science, Rehovot, Israel

joint work with A. Pouquet and R. Marino National Center for Atmospheric Research, Boulder, CO, USA

and D. Rosenberg Oak Ridge National Laboratory, Oak Ridge, TN, USA

> March 26th, 2015 Flowing Matter Across the Scales, Rome

Motivations

- Geophysical Flows: Vortices and waves coexist and prevail over different scales in the atmosphere and ocean.
- Theoretical: rotation and stratification break Kolmogorov theory. Dimensional analysis does not yield a unique result because of the introduction of new timescales, corresponding to the propagation of internal waves:

$$au_{NL} = rac{L}{U}, \qquad au_W = rac{1}{f}, rac{1}{N}, rac{1}{\sigma(\mathbf{k})}$$

Role of vortices and waves in the idealized framework of rotating-stratified turbulence?

Idealized Rotating-Stratified Turbulence

Boussinesq Equations, Cubic domain, periodic BC:

$$\begin{split} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} &= -\nabla P - 2\Omega \mathbf{e}_z \times \mathbf{u} - N\theta \mathbf{e}_z + \nu \Delta \mathbf{u} + \mathbf{F}, \\ \partial \theta + \mathbf{u} \cdot \nabla \theta &= Nu_z + \kappa \Delta \theta, \\ \nabla \cdot \mathbf{u} &= 0. \end{split}$$

DNS Database (R. Marino, D. Rosenberg)

¹R. Marino et al. (2013a). Phys. Rev. E

DNS 1 (512 3 , Re $\sim 10^4$), heta:

Fr = 0.1, Ro = 0.4

Non-dimensional numbers

• Stratification:
$$Fr = \frac{U}{M}$$

• Rotation: $Ro = \frac{U}{fL}$, $(f = 2\Omega)$

Idealized Rotating-Stratified Turbulence

Kinetic energy spectrum and fluxes, DNS (1024³, Re $\approx 10^3$, $k_f = 40$) of stratified flows with or without rotation¹:

Transition from upscale to downscale energy cascade as rotation weakens (Ro increases).

¹R. Marino et al. (2013b). Europhys. Lett.

Normal modes of the linearized equations

Linearized Boussinesq dynamics in Fourier space²:

$$\dot{\mathbf{X}}(\mathbf{k}) = \mathbf{L}(\mathbf{k})\mathbf{X}(\mathbf{k}), \text{ with } \mathbf{X}(\mathbf{k}) = (\hat{u}_x(\mathbf{k}), \hat{u}_y(\mathbf{k}), \hat{u}_z(\mathbf{k}), \hat{ heta}(\mathbf{k}))^T$$

Sp L(k) = {0, $i\sigma(\mathbf{k})$, $-i\sigma(\mathbf{k})$ }, with $\sigma(\mathbf{k}) = k^{-1}\sqrt{f^2k_{\parallel}^2 + N^2k_{\perp}^2}$.

Eigenmodes

Two inertia-gravity wave modes X_±(k):

$$L(k)X_{\pm}(k) = \pm i\sigma(k)X_{\pm}(k).$$

▶ One *slow mode* **X**₀(**k**) with zero linear frequency:

 $\mathbf{L}(\mathbf{k})\mathbf{X}_{0}(\mathbf{k})=0.$

Orthonormal basis:

$$egin{aligned} & \mathbf{X}(\mathbf{k}) = A_0(\mathbf{k})\mathbf{X}_0(\mathbf{k}) + A_-(\mathbf{k})\mathbf{X}_-(\mathbf{k}) + A_+(\mathbf{k})\mathbf{X}_+(\mathbf{k}), \ & \mathbf{X}_r(\mathbf{k})^\dagger \mathbf{X}_s(\mathbf{k}) = \delta_{rs}. \end{aligned}$$

²C. E. Leith (1980). J. Atmos. Sci. P. Bartello (1995). J. Atmos. Sci.

Slow modes and balanced motion

- For rotating-stratified flows: The slow modes are in *hydrostatic balance*: $\partial_z P = -\rho g$, and *geostrophic balance*: $\nabla_\perp P = -2\mathbf{\Omega} \times \mathbf{u}$.
- For stratified flows, the slow modes are not in hydrostatic balance, unless k_⊥ = 0 (vertically sheared horizontal flow (VSHF) modes).

Slow modes and potential enstrophy

Potential vorticity $\Pi = f \partial_z \theta - N \omega_z + \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta$ is a Lagrangian invariant: $\partial_t \Pi + \mathbf{u} \cdot \boldsymbol{\nabla} \Pi = 0$. Potential enstrophy $\int \Pi^2$ is a global invariant. Quadratic part Γ_2 :

$$\Gamma_2 = \frac{1}{2} \int (f \partial_z \theta - N \omega_z)^2 = \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} k^2 \sigma(\mathbf{k})^2 |A_0(\mathbf{k})|^2$$

For stratified flows, the only modes which carry PV have $k_{\perp} \neq 0$.

- 2D: Enstrophy is positive definite.
- > 3D HIT: Helicity is not sign definite.
- Here: Potential enstrophy is positive, but degenerate.

Wave and vortices: global analysis

 $512^3, Fr = 0.04, Re = 10^3, k_F = 22$ $\cdot 10^{-2}$ E_0 -Fr = 0.041.5 E_W -Ro = 0.081 E_0, E_W $\frac{dE_0}{dt}$ N/f200.5 $N/f = \infty$ 0 20 0 10 30 4050012345 10 7 20 N/f

$$E_0 = rac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} |A_0(\mathbf{k})|^2, \qquad E_W = rac{1}{2} \sum_{\mathbf{k} \in \mathcal{B}} [|A_+(\mathbf{k})|^2 + |A_-(\mathbf{k})|^2], \qquad E = E_0 + E_W.$$

- Global energy is dominated by slow modes, regardless of N/f.
- Inverse cascade only when N/f small enough.
- Mostly kinetic energy (not shown)

Wave and vortices: spectral analysis

- Inverse cascade of the slow modes.
- Waves dominate at small scales before turbulence develops, then decay rapidly.
- No inverse cascade of the slow modes.
- Wave spectrum dominated by small scales.
- The larger N/f, the larger E_W(k)/E₀(k) at small scales.

Wave and vortices: spectral analysis

- Inverse cascade of the slow modes.
- Waves dominate at small scales before turbulence develops, then decay rapidly.
- No inverse cascade of the slow modes.
- Wave spectrum dominated by small scales.
- The larger N/f, the larger E_W(k)/E₀(k) at small scales.

Absolute Equilibrium

Introduce canonical probability measure based on the invariants of the system³: $\rho = Z^{-1} \exp(-\beta E - \alpha \Gamma_2)$

- > 2D Turbulence: negative temperature β , infrared divergence, inverse cascade.
- ▶ 3D Turbulence: only positive temperatures β , ultraviolet divergence, direct cascade.

Rotating-Stratified flows at absolute equilibrium⁴:

- β > 0, energy equipartition (ultraviolet catastrophe), like 3D turbulence, which points at a *downscale cascade of energy*.
- ▶ In fact, the dynamics remains in the vicinity of a *slow manifold*.

³T. D. Lee (1952). Q. Appl. Math. R. H. Kraichnan (1967). Phys. Fluids
⁴P. Bartello (1995). J. Atmos. Sci. see M. L. Waite and P. Bartello (2004). J. Fluid Mech. for the purely stratified case.

Restricted partition function

Absolute equilibrium:

$$egin{aligned} \mathcal{Z}(eta) &= \int_{\Lambda} e^{-eta N h(imes)} \mu(d imes), \ &= \int_{0}^{+\infty} e^{-eta N arepsilon} \Omega(arepsilon) darepsilon \ &\sim e^{-N \phi(eta)}, \end{aligned}$$

Metastable states (local minima of the free energy $f(\varepsilon)$): restrict the integral defining the partition function to a subset Λ' of phase space⁵.

Restricted equilibrium:

$$egin{aligned} \mathcal{Z}'(eta) &= \int_{\Lambda'} e^{-eta N h(x)} \mu(dx), \ &= \int_{arepsilon_-}^{arepsilon_+} e^{-eta N arepsilon} \Omega(arepsilon) darepsilon, \ &\sim e^{-N \phi'(eta)}, \end{aligned}$$

$$\phi(\beta) = \min_{\varepsilon \in \mathbb{R}_+} (\beta \varepsilon - s(\varepsilon)) = \beta \varepsilon_1 - s(\varepsilon_1). \qquad \phi'(\beta) = \min_{\varepsilon \in [\varepsilon_-, \varepsilon_+]} (\beta \varepsilon - s(\varepsilon)) = \beta \varepsilon_2 - s(\varepsilon_2)$$

⁵O. Penrose and J. L. Lebowitz (1971). J. Stat. Phys. O. Penrose and J. L. Lebowitz (1979). In: Fluctuation Phenomena. Ed. by E. W. Montroll and J. L. Lebowitz. Amsterdam: North-Holland

Restricted partition function⁶

▶ Rotating-Stratified flows at restricted equilibrium (slow manifold only) Convergence condition: $\beta + \alpha (f^2 k_{\parallel}^2 + N^2 k_{\perp}^2) > 0.$

 $\beta < 0$ regime (I): infrared divergence of the restricted equilibrium energy spectrum, like in 2D turbulence, which points at the existence of an inverse cascade.

Restricted partition function⁶

Rotating-Stratified flows at restricted equilibrium (slow manifold only) Convergence condition: β + α(f²k_µ² + N²k_⊥²) > 0.

 $\beta < 0$ regime (1): infrared divergence of the restricted equilibrium energy spectrum, like in 2D turbulence, which points at the existence of an inverse cascade.

 Purely stratified flows at restricted equilibrium Convergence condition: β + αN²k_⊥² > 0.
β > 0 (regimes (II) and (III)): forward energy cascade. Because of the VSHF modes (k_⊥ = 0).

VSHF modes in the DNS

Vertically sheared horizontal flows: inertial waves ($\sigma(\mathbf{k}) = f$), $u_z = 0$. In the stratified case they become slow modes: characteristic time = eddy turnover time.

In the stratified case, some energy is transferred to the large horizontal scales, but not by a cascade process.

Role of the buoyancy Reynolds number

All the runs above have $Re_b = ReFr^2 \sim 1$. In the inverse cascade regime, Re_b is necessarily limited.

What is the role of vortices and waves in the energy cascade of rotating-stratified turbulence?

Conclusions

- Vortical modes dominate our DNS at low Reb.
- They undergo an inverse cascade when rotation is strong enough.
- Statistical Mechanics in the restricted ensemble supports the idea that the inverse cascade is due to the slow modes.
- It also explains why there is not inverse cascade in the absence of rotation and points to the role of vertically sheared horizontal modes.

Degenerate inviscid invariant:

- Inverse cascade when there is timescale separation.
- Direct cascade otherwise.

Bartello, P. (1995). J. Atmos. Sci. 52, pp. 4410-4428. Herbert, C. et al. (2014). J. Fluid Mech. 758, pp. 374-406. Kraichnan, R. H. (1967). Phys. Fluids 10, pp. 1417-1423. Lee, T. D. (1952). Q. Appl. Math. 10, pp. 69-74. Leith, C. E. (1980). J. Atmos. Sci. 37, pp. 958-968. Marino, R. et al. (2013a). Phys. Rev. E 87.3, p. 033016. — (2013b). Europhys. Lett. 102, p. 44006. Penrose, O. and J. L. Lebowitz (1971). J. Stat. Phys. 3.2, pp. 211-236. — (1979). In: Fluctuation Phenomena. Ed. by E. W. Montroll and J. L. Lebowitz. Amsterdam: North-Holland. Chap. 5, p. 293. Polzin, K. L. et al. (1997). Science 276.5309, pp. 93-96. Waite, M. L. and P. Bartello (2004). J. Fluid Mech. 517, pp. 281-308.

Accessible thermodynamic space for rotating-stratified flows, waves (red) and slow manifold (blue).