

A depth-averaged model for droplets in thin microfluidic channels

Mathias Nagel, P.-T. Brun and François Gallaire LFMI EPFL, Lausanne, Switzerland

erc

Droplet microfluidics

Link et al., Phys. Rev. Lett. (2004)

2D Droplet microfluidics

Dangla et al. (2012)

Need for accurate simulations of moving droplets in thin microchannels

Thin microchannels look like Hele-Shaw cells

- •Stokes flow (low Re)
- •Thin channel h/R<<1
- •Unbounded outer flow (L/R>>1)
- •Capillary number

$$Ca = \frac{\mu U}{\gamma}$$

Hele Shaw flows : Darcy approximation

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
$$\mu \frac{\partial^2 u}{\partial z^2} = \frac{\partial p}{\partial x}$$
$$\mu \frac{\partial^2 v}{\partial z^2} = \frac{\partial p}{\partial y}$$
$$\frac{\partial p}{\partial z} = 0$$
$$\varepsilon \ll 1 \qquad \text{Re}\varepsilon \ll 1$$

Hele Shaw flows : Darcy approximation

$$u(x, y, z) = -\frac{1}{2\mu} \frac{\partial p}{\partial x} z(h-z)$$
$$v(x, y, z) = -\frac{1}{2\mu} \frac{\partial p}{\partial y} z(h-z)$$
$$w(x, y, z) = 0$$

$$\omega_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0!$$

$$\nabla p = -k^2 \mathbf{u}$$

Singular perturbation

2D Brinkman equations

•Aspect ratio k=
$$\sqrt{12}$$
 R/h>>1
•w=0
•Parabolic profiles $\mathbf{v}(x, y, z) = \mathbf{u}(x, y) \frac{6(h-z)}{h^2}$

Stokes eq.

$$\nabla p = \Delta \mathbf{u} - k^2 \mathbf{u}$$

$$\operatorname{Darcy}_{q} = 0$$

2D Brinkman equations

$$\nabla p = \Delta \mathbf{u} - k^2 \mathbf{u}$$
$$\operatorname{div} \mathbf{u} = 0$$

Boundary Element, Method

Pozrikidis – Boundary Integral and Singularity Methods (1992)

Validation of boundary element algorithm for Brinkman equations

Influence of viscosity ratio

Migration velocity for a rigid pancake droplet

Ca<<1 ⇒ Freeze the droplet interface

Recent drop velocity measurements (Leman and Tabeling)

DI water with 1% w/w (SDS) surfactant droplets in fluorinated oil

(■) PDMS system, h=41µm, w2=500µm;

(●) NOA system, h=37µm, w2=3000µm;

Landau-Levich-Bretherton films

Asymptotic correction due to dynamic films

$$\left[\left[\mathbf{n}.\boldsymbol{\sigma}.\mathbf{n}\right]\right] = \gamma \left(\frac{\pi}{4}\kappa + \frac{2}{h}\left(1 + \alpha \operatorname{ca}(\mathbf{x})^{2/3}\right)\right)$$

$$\operatorname{ca}(\mathbf{x}) = \frac{\mu_2 \, \mathbf{u}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})}{\gamma}$$

Local capillary number at point \mathbf{X}

Advancing meniscus : $\alpha = 3.8$

Receding meniscus : $\alpha = -1.13$

Park and Homsy – J. Fluid Mech. (1984) Burgess and Foster – Phys Fluids (1984) Meiburg – Phys Fluids (1984)

Dynamics of deformable droplets

Deformable droplets

Assuming that the droplet does not deform

Undeformable droplets

Analytical expression

Experimental comparison FC40 droplets in water

 γ =53mPa.m, μ_1 =4.1cSt , R/h = 1.3 0.25 0.2 U_{drop}/U_{inf} 0.15 0.1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0 x 10⁻³

Ca

Experimental comparison

Conclusion

In absence of surfactants, the droplet of a velocity can be accurately captured at low Ca