Swimming in complex environments: from biofilms to bacteria powered micro-devices

ROBERTO DI LEONARDO

Dip. Fisica, Sapienza Università di Roma, Italy CNR-NANOTEC Soft and Living Matter Laboratory School for Advanced Studies Sapienza

Outline

A SELF-PROPELLED MICRO-MACHINE

TUESDAY Microhydrodynamics

a) SELF PROPELLING BACTERIA

b) CONFINED SWIMMING

TODAY Statistical Mechanics

STOCHASTIC DYNAMICS IN ACTIVE BATHS I targeted delivery of colloidal cargos

Brownian motion: thermal motion at equilibrium

1827

"Extremely minute particles of solid" matter, when suspended in pure water ... exhibit motions for which I am unable to account." **ROBERT BROWN**

1867

"Brownian motion [...] provides us with one of the most beautiful and direct experimental demonstrations of the fundamental principles of the mechanical theory of heat, making manifest the assiduous vibrational state that must exist both in liquids and solids" **GIOVANNI CANTONI**

1905

A. EINSTEIN

W. SUTHERLAND

MEAN-SOUARE DISPLACEMENT

 $\langle \Delta r^2(t) \rangle = 6Dt$

DIFFUSION COEFFICIENT

 $D = k_B T / \gamma \qquad \gamma = 6\pi \mu a$

STOKES DRAG

Langevin equation

Colloidal delivery at equilibrium

PEAKED CONCENTRATION (DELIVERY TO B) EXTERNAL WORK \longrightarrow ENTROPY DECREASE

$$\frac{\rho_B}{\rho_A} = \exp\left[\int_A^B \frac{f(x)}{k_B T} dx\right]$$

$$\overset{\text{(N)}}{\overset{(N)}{\overset{(N)}{\overset{(N)}}{\overset{(N)}{\overset{(N)}{\overset{(N)}}{\overset{(N)}{\overset{(N$$

Transport with external fields

MAGNETIC, FLOW ...

Optical micromanipulation: Holographic Tweezers

Using active particles as micro-oxen

SYNTHETIC SWIMMERS CATALYTIC Pt-Au NANOMOTOR

SWIMMING CELLS

C. reinhardtii

Colloids in active baths

Non-equilibrium random walks

Holographic microfabrication

Collecting and ejecting structures

KOUMAKIS, LEPORE, MAGGI, RDL, Nature Comm. (2013)

Targeted delivery of colloids

KOUMAKIS, LEPORE, MAGGI, RDL, Nature Comm. (2013)

Average particle densities

KOUMAKIS, LEPORE, MAGGI, RDL, Nature Comm. (2013)

THERMAL BATH

ACTIVE BATH

Fitting transition rates

KOUMAKIS, LEPORE, MAGGI, RDL, Nature Comm. (2013)

$$\mathbf{N}(t) = -\mathbf{\Lambda} \cdot \mathbf{N}(t) + \mathbf{S}$$
$$\mathbf{N} = (n_0, n_1, n_2) \qquad \mathbf{S} = (0, 0, s)$$

 $\lambda_{+} = 0.66 \text{ min}^{-1}$ $\lambda_{-} = 0.36 \text{ min}^{-1}$

Curvature effect

KOUMAKIS, LEPORE, MAGGI, RDL, Nature Comm. (2013)

Two-photon lithography

G. VIZSNYICZAI, UNPUBLISHED

STOCHASTIC DYNAMICS IN ACTIVE BATHS II a bacterial ratchet motor

Work from fluctuations

UNBIASED RANDOM FLUCTUATIONS

Work from fluctuations

UNBIASED RANDOM FLUCTUATIONS

Work from fluctuations

UNBIASED RANDOM FLUCTUATIONS

"C'est la dissymétrie qui crée le phénomène" P. CURIE, J. PHYS 3, 393, (1894)

Brownian ratchets

XXII. EXPERIMENTELL NACHWEISBARE, DER ÜBLICHEN THERMODYNAMIK WIDERSPRECHENDE MOLEKULAR-PHÄNOMENE.

Physikalische Zeitschrift, XIII. Jahrgang, pp. 1069-1080. 1912. Vortrag vor der 84. Naturforscherversammlung zu Münster (Westfalen).

T₂

M. SMOLUCHOWSKI

1916 2-nd Lecture series in Göttingen

"So it is impossible to design a machine which, in the long run, is more likely to be going one way than the other, if the machine is sufficiently complicated"

T,

"It is based on the fact that the laws of mechanics are reversible"

MAINLY MECHANICS, RADIATION, AND HEAT

Bacterial dynamics violates detailed balance

Micro-fabrication

E. DI FABRIZIO BIONEM LAB, CATANZARO

2D geometries

2D geometries

2D geometries

R. DI LEONARDO, et al. PNAS (2010)

Bacteria-boundary interaction

High concentration regime

STOCHASTIC DYNAMICS IN ACTIVE BATHS

- persistent (non FDT) forces due to bacteria generate stationary states characterized by <u>probability distributions</u> that strongly <u>deviate from Boltzmann</u>
- these stationary states are also microscopically <u>not invariant under time reversal</u>
- these peculiar properties of active matter allow to exploit <u>bacteria as a workforce</u> <u>in miniaturized environments</u>

microsfisica

CONSIGLIO NAZIONALE DELLE RICERCHE - NANOTEC SOFT AND LIVING MATTER LABORATORY **DIPARTIMENTO DI FISICA SAPIENZA** P.Ie A. Moro 2, 00185 ROMA, ITALY

PHYSICS AT THE MICRON SCALE

PEOPLE

R. DI LEONARDO

C. MAGGI

N. KOUMAKIS

M. PAOLUZZI

S. BIANCHI

G. VIZSNYICZAI

COLLABORATIONS

L. ANGELANI, CNR-IPCF SAPIENZA E DI FABRIZIO, C. LIBERALE, KAUST, SAUDI ARABIA

FUNDING

HYDRO SYNC IN ROTATING LANDSCAPES

KOUMAKIS & RDL, PRL (2013)

IMAGING THROUGH OPTICAL FIBERS

TRAPPING AT GPa BOWMAN, GIBSON, PADGETT, SAGLIMBENI, RDL PRL (2013).

roberto di leonardo