Swimming in complex environments: from biofilms to bacteria powered micro-devices

ROBERTO DI LEONARDO

Dip. Fisica, Sapienza Università di Roma, Italy CNR-NANOTEC Soft and Living Matter Laboratory School for Advanced Studies Sapienza

A SELLENCELORELATE DANCING CO-RECTOR SINE

TODAY Microhydrodynamics

FRIDAY Statistical Mechanics

d) BACTERIA POWERED MICRODEVICES

<section-header>

SELF-PROPULSION swimming at the micron-scale

Swimming bacteria: why?

Problem 1: hydrodynamic reversibility

LOW REYNOLDS NUMBER FLOWS by G.I. TAYLOR, NCFM FILMS USA

Problem 1: hydrodynamic reversibility

Problem 2: Brownian rotation

The procaryotic flagellum

PROBLEM 2 TOTAL LENGTH INCREASE BY ~5 ROTATIONAL DIFFUSION DECREASE BY 5³=125

Flagellar propulsion

RUN AND TUMBLE DYNAMICS

ESCHERICHIA COLI, BERG LAB HARVARD

PROTONIC NANOMACHINE PROJECT OSAKA UNIVERSITY

S. CHATTOPADHYAY et al. PNAS (2006)

$$\left(\begin{array}{c} \mathbf{U} \\ \mathbf{\Omega} \end{array}\right) = \left(\begin{array}{cc} \mathbf{M}^{UF} & \mathbf{M}^{UT} \\ \mathbf{M}^{UT^{\mathsf{T}}} & \mathbf{M}^{\Omega T} \end{array}\right) \cdot \left(\begin{array}{c} \mathbf{F} \\ \mathbf{T} \end{array}\right)$$

$$\left(\begin{array}{c} \mathbf{F} \\ \mathbf{T} \end{array}\right) = \left(\begin{array}{cc} \mathbf{\Gamma}^{FU} & \mathbf{\Gamma}^{F\Omega} \\ \mathbf{\Gamma}^{F\Omega^{\mathsf{T}}} & \mathbf{\Gamma}^{T\Omega} \end{array}\right) \cdot \left(\begin{array}{c} \mathbf{U} \\ \mathbf{\Omega} \end{array}\right)$$

RESISTANCE EQUATIONS

$$\Gamma_{zz}^{F\Omega} \propto \ell d(\gamma_{\perp} - \gamma_{||})$$

$$F_z = \Gamma_{zz}^{F\Omega} \ \Omega_z$$

$$\begin{array}{c|c} \mathbf{DRAG} & v_{||} \\ \hline & & & \downarrow \\ \hline & & & \downarrow \\ \hline & & & & \downarrow \\ \hline & & & & -\gamma_{\perp}v_{\perp} \\ \hline & & & \gamma_{\perp} > \gamma_{||} \end{array}$$

Propulsion matrix

Measuring propulsion matrix

BIANCHI, SAGLIMBENI, LEPORE, DI LEONARDO Opt. Express (2014)

a)

BIANCHI, SAGLIMBENI, LEPORE, DI LEONARDO under review

CONFINED SWIMMING wall entrapment

BIOFILM

VIGEANT, FORD APPL. ENVIRON. MICROB. (1997). NO DLVO, HYPOTHESIS 2: HYDRODYNAMICS

BERKE et al. PRL (2008) HYPOTHESIS 2A: HYDRODYNAMICS (FAR FIELD)

LI, TANG PRL (2009) HYPOTHESIS 3: STERIC REPULSION (NO HYDRODYN.)

Entrapment by convex walls

O. SIPOS , K. NAGY, RDL, P. GALAJDA, under review

Entrapment by convex walls

O. SIPOS , K. NAGY, RDL, P. GALAJDA, under review

Hydrodynamic origin

O. SIPOS , K. NAGY, RDL, P. GALAJDA, under review

NALL
LAR BUNDLE
$$\tau_z = -\gamma_{zz}^{T\Omega}\Omega_z + \gamma_{zx}^{TU}U_x$$

CELL BODY $T_z = -\Gamma_{zz}^{T\Omega}\Omega_z - \Gamma_{zx}^{TU}U_x$
 $\tau_z + T_z = 0$
 $\dot{\theta} = -\Omega_z = 0 \Rightarrow \sin\theta_{\infty} = \frac{\Gamma_{zx}^{TU}}{L\gamma_{\perp}^{FU}}$

 $\begin{aligned} \dot{\theta} &= -\Omega_z - U_x / R = 0\\ \sin \theta_R &= \sin \theta_\infty - \frac{\Gamma_{zz}^{T\Omega} + \gamma_{zz}^{T\Omega}}{LR \gamma_\perp^{FU}} \end{aligned}$

Swimming angle depends on pillar radius

O. SIPOS , K. NAGY, RDL, P. GALAJDA, under review

Reduced colonization of small pillars

CONFINED SWIMMING swimming with an image

Swimming at a wall

Escherichia coli swim on the right-hand side

Willow R. DiLuzio^{1,2}, Linda Turner³, Michael Mayer¹, Piotr Garstecki¹, Douglas B. Weibel¹, Howard C. $Berg^{3,4}$ & George M. Whitesides¹

"The flagellar bundle rolls to the left near the surface, and the cell body rolls to the right near the surface. These two motions cause the cell to swim in a clockwise, circular trajectory"

E. Lauga et al. Biophysical Journal 90(2) 400-412

Hydrodynamic images

WHAT HAPPENS ON A LIQUID-GAS INTERFACE?

REFLECTION SIMMETRY

$$\begin{array}{c} & \downarrow \\ u_y = 0 & \frac{\partial u_x}{\partial y} = 0 \end{array}$$

PERFECT SLIP BOUNDARY CONDITIONS

Swimming with an image

Swimming with an image

R. DI LEONARDO et al. PRL 106, 038101 (2011)

Science NOW

2d

 \mathbf{u}^{f}

Z

$$\alpha = \begin{cases} b & \text{BODY} \\ f & \text{FLAGELLUM} \end{cases}$$

$$\mathbf{U}^{\alpha} = \mathbf{M}^{\alpha} \cdot \mathbf{F}^{\alpha} + \mathbf{D}^{\alpha} \cdot \mathbf{T}^{\alpha}$$

$$\Omega^{\alpha} = \mathbf{K}^{\alpha} \cdot \mathbf{T}^{\alpha} + (\mathbf{D}^{\alpha})^{T} \cdot \mathbf{F}^{\alpha}$$
+RIGIDITY CONSTRAINTS
$$\mathbf{MAGE BODY AND FLAGELLUM GENERATE A "BACKGROUND FLOW"}$$

$$\mathbf{u}^{\alpha} = \mathbf{G}^{uF} \cdot \mathbf{F}^{\prime \alpha} + \mathbf{G}^{uT} \cdot \mathbf{T}^{\prime \alpha},$$

$$\omega^{\alpha} = \mathbf{G}^{wT} \cdot \mathbf{T}^{\prime \alpha} + \mathbf{G}^{wF} \cdot \mathbf{F}^{\prime \alpha}$$

$$\mathbf{G}^{uT}_{yx} = \frac{1}{8\pi\mu\hbar\ell^{\alpha}} \longrightarrow \mathbf{SMALLER "BACKGROUND" FLOW}$$

$$\mathbf{LARGER CURVATURE RADIUS}$$

Video tracking bacteria

SELF-PROPULSION

 flagellar propulsion provides a simple strategy for swimming in low Re and fluctuating environments

CONFINED SWIMMING

- •wall entrapment is hydrodynamic in origin and can be reduced using convex walls with small curvature radius
- wall-trapped bacteria swim to either right or left hand depending on the surface boundary condition (stick/slip)