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swimming at the micron-scale



Swimming bacteria: why?
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• PERSISTENT MOTION
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BACTERIA ARE COLLOIDS



Problem 1: hydrodynamic reversibility
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Problem 1: hydrodynamic reversibility
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“if the animal tries to swim by a
reciprocal motion, it can't go anywhere”
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The procaryotic flagellum
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Flagellar  propulsion
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45 nm

conversion of the semicoiled form to the curly 1 form, followed
later by a motor reversal (CW to CCW), causing the filament
to transform back to its normal form and rejoin the bundle, as
shown in Fig. 7. Although this is our best reconstruction of the
canonical tumble, other endings are possible. For example, if
the second motor reversal (CW to CCW) occurs while the
filament is still in the semicoiled form, the filament transforms
directly from semicoiled back to normal, skipping the curly
form entirely.

We applied resistive force theory (20, 27) to the data ob-
tained with free-swimming cells and found that the torque
required to spin the filaments is roughly the same as the torque
required to spin the cell body. Assuming the same helix radius
and pitch as before (0.2 !m and 2.22 !m), but treating the
bundle as a single a filament having twice the radius (0.024
!m), for the 32 cells in Table 2 we obtained a bundle torque
("bundle) of 650 # 220 pN nm, a bundle thrust (Fbundle) of
0.41 # 0.23 pN, a body torque ("body) of 840 # 360 pN nm, and
a body drag (Fbody) of 0.32 # 0.08 pN. Chattopadhyay et al.
(14) used an optical trap to measure the propulsion matrix,
which connected bundle torque and bundle thrust to swimming
speed and bundle angular velocity, as "bundle $ %Bv & D' and
Fbundle $ %Av & B'. Using the values of Chattopadhyay et al.
for A, B, and D with our measured swimming speed and
bundle rate gives a "bundle value of 550 pN nm and an Fbundle

value of 0.28 pN, in agreement with our values for these pa-
rameters. In our calculations, the body was assumed to be a
prolate ellipsoid with the length and width shown in Table 2,
rotating about the bundle axis at angular velocity ( at distance
m from the body center along the cell major axis, with the axes
forming an angle ()) equal to half the wobble angle, as shown
in Fig. 8. The expression for the viscous drag of the cell body
averaged about the bundle axis, adapted from a solution kindly
provided by Tobias Löcsei and John Rallison of Cambridge
University, yields a force resisting the translation of magnitude

Fbody $ v(A1sin2) & A2cos2)) and a torque resisting the rota-
tion of magnitude "body $ ([(D1 & m2A1) sin2) & D2cos2)].
With viscosity *, eccentricity e [e $ (a2 % b2)1/2/a], and E $
ln[(1 & e)/(1 % e)], the values of the coefficients are:

A1 $ 32+*ae3/[(3e2 % 1)E & 2e]
A2 $ 16+*ae3/[(1 & e2)E % 2e]
D1 $ 32+*ab2e3(2 % e2)/3(1 % e2)[(1 & e2)E % 2e]
D2 $ 32+*ab2e3/3[2e % (1 % e2)E]

For each cell, we obtained two independent measurements
of torque and force; one measurement was based on resistive

FIG. 7. Idealized sequence of events in a tumble caused by the reversal of a single motor. The upper timeline indicates the direction of motor
rotation of the filament causing the tumble, and the lower timeline indicates the behavior as judged by motion of the cell body. From left to right:
1, a bacterium swimming along its original trajectory with all left-handed normal filaments; 2, a motor reversal (CCW to CW) causing the filament
to start unbundling and the cell body to deflect slightly; 3, initiation of the transformation of the filament from the left-handed normal form to the
right-handed semicoiled form and the beginning of a large deflection of the cell body opposite the previous small deflection; 4, complete
transformation of the filament to the semicoiled form and reorientation of the cell along a new trajectory; 5, movement of the cell along the new
trajectory, propelled by a normal bundle turning CCW and a semicoiled filament turning CW which has partially transformed to the right-handed
curly 1 form; 6, complete conversion of the filament to the curly 1 form, which is flexible enough to twist loosely around the bundle; 7, the motor
reversing again (CW to CCW), causing the curly 1 form to revert to normal; and 8, after the filament has rejoined the bundle.

FIG. 8. Cell body in the shape of a prolate ellipsoid having length
2a and width 2b swimming at velocity v along the bundle axis, with the
center of its body at distance m from, and at angle ) with respect to, the
bundle axis, and rolling about that axis at angular velocity (. ) is half
the body wobble.
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RUN AND TUMBLE DYNAMICS



PROTONIC NANOMACHINE PROJECT
OSAKA UNIVERSITY



Propulsion matrix

z
�? > �||

v||��||v||
v?

��?v?

�F⌦
zz / `d(�? � �||)

Fz = �F⌦
zz ⌦z

RESISTANCE EQUATIONS
✓

F
T

◆
=

✓
�FU �F⌦

�F⌦|
�T⌦

◆
·
✓

U
⌦

◆

✓
U
⌦

◆
=

✓
MUF MUT

MUT|
M⌦T

◆
·
✓

F
T

◆
MOBILITY EQUATIONS

HYDRODYNAMIC
THRUST

OPTICAL

S. CHATTOPADHYAY et al. PNAS (2006) 

HYDRODYNAMIC
DRAG

DRAG



BIANCHI, SAGLIMBENI, LEPORE, DI LEONARDO 
under review

Measuring propulsion matrix
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CONFINED SWIMMING

wall entrapment
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Wall entrapment
BIOFILM Proc. Natl. Acad. Sci. USA 92 (1995)

the distance corresponding to the closest approach of the cell
to the surface from all of the experimentally recorded surface-
to-cell distances for that cell. The drift in the calibration was
negligible during the tracking of any single bacterium but
would be significant if not accounted for over the duration of
an entire experiment, typically an hour.
The electrophoretic mobility, !E, for both the bacteria and

pulverized glass coverslips in the phosphate buffer solution
(ionic strength, 0.19 M) was measured with a Doppler elec-
trophoretic light scattering analyzer (Coulter Delsa 440). For
the bacteria and glass particles, ZE = -1.49 and -2.51
,m cm/V s, respectively. Their surface potentials were ap-
proximated by the zeta potentials, {, calculated from the
electrophoretic mobilities by the use of the Smoluchowski
equation (15), r = AEA/, where jL is the fluid viscosity and £
is the dielectric permittivity of the medium. The value of the
Hamaker constant in equation 4 of Norde and Lyklema (16)
was taken as 10-21 J, the particle radius as 1 ,um, and the
relative permittivity of the medium as 78.3.

RESULTS AND DISCUSSION
An example of the motion of a wild-type bacterium as it
performs its random walk in a homogeneous fluid medium is
shown in Fig. 1A. The trail shown was reconstructed by using
computer graphics to visualize the position coordinates of an
E. coli K-12 bacterium recorded every 1/12 s with the three-
dimensional tracking microscope (13, 14). Fig. 1B shows a
bacterium of the same strain moving near a solid surface. The
bacterium shown in Fig. 1B approached the flat surface twice
during the tracking experiment. Fig. 2A shows the distance and
speed as a function of time along the cell path for this
bacterium. The bacterium came closest to the surface at times
4 s and 22 s. The single tumble is designated by the solid circle
on the distance line in Fig. 2A. The corresponding magenta
sphere in Fig. 1B is obscured in this view. The distance
decreased steadily between 0 and 4 s and then remained
essentially constant between 4 and 9 s. As discussed in
Methods, the distances plotted are the experimentally recorded
distances minus the distance at the bacterium's closest ap-
proach to the surface (5 ,um for the bacterium shown in Fig.
2A, which was a typical value for the traces shown here).
Experiments performed to determine the accuracy of distance
measurements based on the focus of an object indicated that
the actual separation distance was <2 ,um; therefore, distances
reported here should be taken as ±2 ,um. At 10 s, the cell
moved away from the surface; it returned again at 22 s. For
both times at which the cell approached the surface, the
swimming speed dropped from =15 ,um/s to 5-7 ,tm/s and
then recovered as the cell began to swim parallel to the surface.
Fig. 2 B and C show the experimentally observed cell swim-
ming speed plotted in dimensionless form versus the dimen-
sionless separation distance. The data from the time near 4 s
were used to generate Fig. 2B and the data from the time near
22 s were used in Fig. 2C.
Also shown in Fig. 2 B and C are BEM solutions to Stokes'

equation of motion by Ramia et al. (9) for a model bacterium
composed of a spherical body propelled through a viscous fluid
by a single helical flagellum rotating at a constant rate. There
are other models, such as that of Brenner (17), that consider
the translation of a sphere toward a wall through a quiescent
fluid and do not explicitly include the effects of the rotating
flagellar bundle used by bacteria like E. coli for propulsion.
Because of the inclusion of a rotating flagellum, the model of
Ramia et al. is the most physically accurate known to us for a
bacterium moving through a fluid medium in the vicinity of a
surface. However, like the other models mentioned, the model
of Ramia et al. ignores tumbling and therefore can only be used
to model the running phase of bacterial motion.

FIG. 1. Computer visualizations of traces generated by tracking
individual E. coli cells. Data points collected during runs are shown as
yellow spheres and those collected during tumbles are shown as
magenta spheres. There are 12 points per s. The scale bar at the bottom
of each panel represents 50 ,um. (A) A cell from a wild-type K-12 strain
(NR50) moving in the fluid phase far (>400 ,um) from any surface. (B)
Another such cell moving near the top window of the chamber (shown
as a red plane with a white surface normal). The bacterium approached
the surface nearly perpendicularly twice, once near the beginning of
the trace and again near the end. (C) A cell of smooth-swimming strain
HCB437 near the top window. The bacterium approached the surface
and then swam in circles along the surface. (D) A wild-type cell moving
near the surface. This cell executed several tumbles while adjacent to
the surface. (E) A smooth-swimming cell that approached the surface
and then moved along it, tracing out a circular path. (F) The same trace
as in E, but shown on edge.

The BEM solutions shown in Fig. 2 B and C apply to a
bacterium approaching the surface at two different orienta-
tions to the surface normal, one for the cell approaching the
surface perpendicularly, indicated by an orientation angle of
00, and one for the cell approaching the surface at an angle of
450. The orientation angle for the bacterium in the experiment
was calculated to be between 0° and 450 for this portion of the
cell trace. The experimental data collected with the micro-
scope were used to test the model of Ramia et al. (9) for
bacteria approaching surfaces. The data show the qualitative
relationship predicted by the model; the speed begins to
decrease significantly when the cell is within 10 ,um of the
surface and continues to decrease as the cell approaches the
surface. The experimentally measured speeds also agree quan-
titatively with the speeds predicted by the model to within the
accuracy of the data. The random variation in the data can be
judged by considering the portion of the cell's trace between
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verified by caliper measurement. A phase-contrast micro-
scope (Nikon Optiphot-2) using 600! magnification
(depth of field 4:3 !m) and equipped with a shuttered
CCD video camera (Marshall Electronics V1070) set for
an exposure of 1 ms=frame is used to image the population
of swimming cells. The video signal is sent to a MacG4
equipped with an LG-3 frame grabber (Scion Image) and
IMAGEJ software [National Institutes of Health (NIH),
Bethesda, MD]. We capture 2-second movies at 20 frames
per second and measure the number of swimming cells by
counting cells swimming at speed faster than 1 body length
per second. We start 5 !m above the lower glass surface;
we then bring the plane of focus up 10 !m and repeat the
measurement until we reach within 5 !m of the upper
glass surface. Experiments are then repeated with other
cell samples and sets of cover slips.

In our protocol, two parameters can be varied: the dis-
tanceH between the two cover slips (we choseH " 100 or
200 !m) and the cell density of the final mixture, i.e., the
size of the overall cell population (whenH " 100 !m, we
performed additional experiments doubling the number of
cells). The experimental results are shown in Fig. 2; verti-
cal errors bars represent statistics on ten different experi-
ments and horizontal error bars the depth of field. As in
Ref. [6], we find that the cell profile peaks strongly near the
walls, with a nearly constant cell density about 20 !m
away from the walls; this is the main experimental result of
this Letter.

We now turn to the physical understanding of the attrac-
tion phenomenon. In order to provide a complete physical
picture, we need to identify the mechanism responsible for
the nonuniform cell distribution and predict the steady-
state profile observed experimentally.

The physical mechanism for the attraction is the hydro-
dynamic interactions between swimming cells and sur-
faces [10,11]. The flow around most flagellated swim-
ming organisms, including spermatozoa cells or bacteria
such as E. coli, is well approximated by a force dipole
(stresslet) [19]: The flagellar motion provides the propul-
sive force which is opposed by the drag on both the cell
body and flagella, corresponding to a force dipole in which
both the flagella and the body act on the fluid in the
direction away from the cell [represented in Fig. 3(a) by
two arrows pointing in opposite directions]. The fluid
velocity is given by u " p

8"#r3 #$1% 3 #r&e'
2

r2 'r, where p >
0 is the dipole strength, e the swimming direction, # the
viscosity, and r the distance to the dipole; this far-field
model is valid for distances larger than the length L of the
swimming cells (body plus flagella), an approximation that
we will make in this Letter.

Near a wall, the flow field induced by the cell is a
superposition of that due to the force dipole, plus any
image flow field, located on the other side of the surface,
and necessary to enforce the correct surface boundary
condition (similar to the method of images in electrostatics,
only here the image is a vector field). The image system for

a force dipole parallel to a no-slip surface is known [20]
(force dipole, force quadrupole, and source quadrupole)
and is found to induce, at the location of the dipole, a
velocity component towards the solid surface of order
(p=#y2, where y is the distance to the surface
[Fig. 3(b)]; this wall-induced flow is the reason for the
attraction [11]. To gain physical intuition, it is easier to
picture a dipole near a free surface; in that case, the image
system is an equal dipole on the other side of the surface,
and two parallel dipoles attract each other. Physically, this
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FIG. 2 (color online). Experimental data: number of swim-
ming cells n as a function of the distance to the bottom cover
slip y when the distance between the surfaces is H " 100 !m
(top) and H " 200 !m (bottom). The lines are fits to the data
with the model of Eq. (6) with n0 " 1:5 and L? " 34:8 !m
(top, solid line), n0 " 0:3 and L? " 59:1 !m (top, dashed
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FIG. 3 (color online). Attraction of microorganisms to solid
surfaces. (a) The flow field around a swimming cell is well
approximated by a force dipole of strength p > 0, represented
by two arrows pointing in opposite directions. (b) Hydrodynamic
attraction of a force dipole by a no-slip surface due to the image
system on the other side of the surface (force dipole, force
quadrupole, source quadrupole). (c) Notations for the model.
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cell body appeared as a sharp bright spot when it was in the
focal plane and as a ring when it was away. Wu et al. [11]
found that the ring size was proportional to the distance of
the cell from the focal plane and therefore could be cali-
brated to determine the distance. Two examples of 3D
trajectories of the cells 1 and 2 in Fig. 1(a) are plotted in
Figs. 1(b) and 1(c). Most cells approached the surface at an
angle and then swam parallel to the surface for some time
before departure. The manner of C. crescentus hitting a
surface is similar to that of E. coli observed with three
dimensional tracking microscopy [12].

We analyzed the force and torque on C. crescentus
swimming near a surface and found that it would invariably
swim parallel to the surface shortly after hitting the sur-
face. As a simple model, we approximated the cell as a
sphere attached with a helical filament of length L pro-
pelled by a longitudinal force Fp. After the cell hits the

surface at an angle !, its velocity component along the
direction normal to the surface [y axis, Fig. 2(a)] becomes
zero. It maintains a swimming speed Vx along the x axis
and a rotation rate ! along the z axis (not shown in the
figure). We ignored the increase in hydrodynamic drag on
the cell due to the nearby surface [10,13] and assumed that
the surface only provides a normal force Fs to stop the
swimming along the y axis. The hydrodynamic drag force
on the whole cell (sphere plus helical filament) is split into
components parallel and perpendicular to the long axis, Fk
and F?. The hydrodynamic torque " on the whole cell is

depicted with respect to the sphere center. The forces and
torque are related to the velocity components as

Fk
F?
"

0
@

1
A ¼

"A11 0 0
0 "A22 A23

0 A32 "A33

0
@

1
A

Vk
V?
!

0
@

1
A; (1)

where Vk ¼ Vx cos! and V? ¼ Vx sin! are the velocity
components along and perpendicular to the helical axis
and A is the friction matrix, for which Aij > 0 and A23 ¼
A32.
At a low Reynolds number, the force balance along x

axis requires Fp cos!þ Fk cos!þ F? sin! ¼ 0 and
torque balance along z direction requires " ¼ 0. Substi-
tuting the hydrodynamic forces and torque with Eq. (1), the
balance equations determine the swimming speed and
rotation rate as

Vx ¼
A33 cos!

A33ðA11cos
2!þ A22sin

2!Þ " A2
23sin

2!
Fp; (2)

! ¼ A23 sin! cos!

A33ðA11cos
2!þ A22sin

2!Þ " A2
23sin

2!
Fp: (3)

Since A22A33 > A2
23, the common denominator in the ex-

pressions above is always positive. In the case as shown in
Fig. 2(a), Vx > 0 and !> 0. Therefore the cell swims
toward the right and the filament rotates toward the surface.
We can estimate how fast the cell turns parallel to the

surface as its head glides on the surface. Mathematically,
the cell would take an infinitely long time to become
parallel to the surface, as calculated from Eq. (3). In
practice, however, since the rotational Brownian motion
of C. crescentus varies its orientation by 0.1 rad within less
than 0.1 sec, we estimate instead the time needed for the
cell alignment with the surface to fall below 0.1 rad. The
parameters for a typical C. crescentus [10,14] are A11 ¼
2:2& 10"8 N sm"1, A22 ¼ 2:5& 10"8 N sm"1, A33 ¼
1:9& 10"19 Nm s, and A23 ¼ 5:3& 10"14 N s. The pro-
pulsive force is Fp ¼ A11V ' 1& 10"12 N, where V is the
bulk swimming speed. The rotation rate after hitting a
surface is shown in Fig. 2(b), which reaches 9 rad=s at
55(. If a cell hits the surface at an angle !0, the time for it to

become parallel is
R!0
0:1 d!=! [Fig. 2(b)]. This is less than

0.2 s for a typical angle of !0 ¼ 30(, and less than 0.3 s for
an angle as large as 85(. Therefore in the following dis-
cussion we state in a practical sense that a cell becomes
parallel to the surface after a collision.
Now we examine how a swimming microorganism takes

off after hitting a surface. To further simplify the model, we
approximate the elongated swimmer propelled by a longi-
tudinal force as a nonuniform rod [Fig. 3(a)]. This rod
swims forward at speed V in the bulk fluid. The rod has
a rotation center at position O, which is of a distance L1

away from the head and L2 away from the tail. Since the
head has a larger drag per unit length than the tail does,
L1 < L2. Because of its small size, the rod undergoes
constant Brownian motion with a rotational diffusion con-
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FIG. 1 (color online). Trajectories of Caulobacter swarmer
cells swimming near a glass surface. (a) Overlay of 40 consecu-
tive darkfield images taken at 10 frames per second. (b) and
(c) are 3D plots (red circles) and projections (blue lines) on the
glass surface of the trajectories of cells 1 and 2 in (a). Arrows
indicate the swimming directions.
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FIG. 3: (color online) Schematic illustration and notation for
the hydrodynamic model proposed in the text.

in the gap region resulting in a negative z torque com-
ponent that is proportional to the x component of body
velocity U

x

. Calling ⌦
z

the angular speed of the cell we
get for the total torque acting on the body:

T
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= ��T⌦
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U
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(1)

where all components of the resistance matrices are taken
to be positive. Similarly, the torque on the flagellar bun-
dle will display, in addition to a rotational drag propor-
tional to ⌦

z

, a coupling term �TU

zx

.
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zz
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The coupling term is now positive and arises from the
displacement of the bundle centre of resistance from the
origin O that we choose to be centred on the cell body:

�TU

zx

= L�FU

? sin ✓ (3)

The only external force is represented by the reaction
force from the wall. The normal component of that force
will not produce any torque about our origin O. We
cannot exclude in principle the presence of a tangential
friction component but it will just add up to the hydrody-
namic component �TU

zx

. The overall system is therefore
torque-free so that we can add Eqns. (1) and (2) and
solve for ⌦

z

:
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The swimming angle ✓ has a stable equilibrium value ✓1
for which ✓̇ = �⌦

z

= 0:

sin ✓1 =
�TU

zx

L�FU

?
(5)

where the subscript 1 indicates that we are here consid-
ering the case of flat wall, or in other words an infinite
pillar radius R. Pillar radii are always enough larger
than the cell size so that we can assume that all hydro-
dynamic resistance matrices are negligibly a↵ected by the
small wall curvature. In that situation we can take into
account the finite curvature of the pillar by moving to a
reference frame that rotates around the pillar axis with
an angular speed given by �U

x

/R. In this new reference
frame the time derivative of ✓ will be given by:

✓̇ = �⌦
z
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x

R
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✓
�TU

zx

� L�FU

? sin ✓

�T⌦
zz

+ �T⌦
zz

� 1

R

◆
U
x

(6)

The stable value for ✓ now decreases as the pillar radius
becomes smaller:

sin ✓
R

= sin ✓1 � �T⌦
zz

+ �T⌦
zz

LR�FU

?
(7)

There exists a critical value R⇤ for the pillar radius below
which the stable value for ✓ becomes negative, meaning
that the cell swims away from the surface (Fig. 3):
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where, in the last passage, we used the fact that the cell
length 2L is mostly given by the length of the flagellar
bundle `. As shown in (5), the actual value of ✓1 de-
pends on �TU

zx

, a quantity that is expected to be very
sensitive on the actual value of the gap between the cell
and the wall. Rather then entering into the di�culties
of theoretically predicting �TU

zx

, we prefer to obtain ✓1
from experimental observations and check the theory by
directly verifying relation (9). To this aim we used video
microscopy with higher magnification to determine the
cell orientation during swimming near flat obstacles. 58
individual cells were tracked. As expected, we found that
the cells swim with a finite average swimming angle to
the surface plane (Fig. 4). The observed average value
for ✓1 is 5� which for a typical bundle length of 7.5 µm
gives R⇤ = 57 µm. The distribution of average ✓1 is
actually very broad and is reported in Fig. 4b. Using
this distribution we can predict the fraction of trapped
cells for pillars of radius R as the fraction of ✓1 angles
whose corresponding values of R⇤ is lower than R. The
results are shown as a solid line in Fig. 2a where we have
just rescaled predicted fractions to give the correct limit
for infinite radius of curvature. Equations (9) and (5)
also show that the cell swimming velocity plays no role
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the hydrodynamic model proposed in the text.
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The coupling term is now positive and arises from the
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origin O that we choose to be centred on the cell body:
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force from the wall. The normal component of that force
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cannot exclude in principle the presence of a tangential
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where the subscript 1 indicates that we are here consid-
ering the case of flat wall, or in other words an infinite
pillar radius R. Pillar radii are always enough larger
than the cell size so that we can assume that all hydro-
dynamic resistance matrices are negligibly a↵ected by the
small wall curvature. In that situation we can take into
account the finite curvature of the pillar by moving to a
reference frame that rotates around the pillar axis with
an angular speed given by �U
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There exists a critical value R⇤ for the pillar radius below
which the stable value for ✓ becomes negative, meaning
that the cell swims away from the surface (Fig. 3):
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where, in the last passage, we used the fact that the cell
length 2L is mostly given by the length of the flagellar
bundle `. As shown in (5), the actual value of ✓1 de-
pends on �TU

zx

, a quantity that is expected to be very
sensitive on the actual value of the gap between the cell
and the wall. Rather then entering into the di�culties
of theoretically predicting �TU

zx

, we prefer to obtain ✓1
from experimental observations and check the theory by
directly verifying relation (9). To this aim we used video
microscopy with higher magnification to determine the
cell orientation during swimming near flat obstacles. 58
individual cells were tracked. As expected, we found that
the cells swim with a finite average swimming angle to
the surface plane (Fig. 4). The observed average value
for ✓1 is 5� which for a typical bundle length of 7.5 µm
gives R⇤ = 57 µm. The distribution of average ✓1 is
actually very broad and is reported in Fig. 4b. Using
this distribution we can predict the fraction of trapped
cells for pillars of radius R as the fraction of ✓1 angles
whose corresponding values of R⇤ is lower than R. The
results are shown as a solid line in Fig. 2a where we have
just rescaled predicted fractions to give the correct limit
for infinite radius of curvature. Equations (9) and (5)
also show that the cell swimming velocity plays no role
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The coupling term is now positive and arises from the
displacement of the bundle centre of resistance from the
origin O that we choose to be centred on the cell body:
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The only external force is represented by the reaction
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will not produce any torque about our origin O. We
cannot exclude in principle the presence of a tangential
friction component but it will just add up to the hydrody-
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where the subscript 1 indicates that we are here consid-
ering the case of flat wall, or in other words an infinite
pillar radius R. Pillar radii are always enough larger
than the cell size so that we can assume that all hydro-
dynamic resistance matrices are negligibly a↵ected by the
small wall curvature. In that situation we can take into
account the finite curvature of the pillar by moving to a
reference frame that rotates around the pillar axis with
an angular speed given by �U
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/R. In this new reference
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There exists a critical value R⇤ for the pillar radius below
which the stable value for ✓ becomes negative, meaning
that the cell swims away from the surface (Fig. 3):
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where, in the last passage, we used the fact that the cell
length 2L is mostly given by the length of the flagellar
bundle `. As shown in (5), the actual value of ✓1 de-
pends on �TU

zx

, a quantity that is expected to be very
sensitive on the actual value of the gap between the cell
and the wall. Rather then entering into the di�culties
of theoretically predicting �TU

zx

, we prefer to obtain ✓1
from experimental observations and check the theory by
directly verifying relation (9). To this aim we used video
microscopy with higher magnification to determine the
cell orientation during swimming near flat obstacles. 58
individual cells were tracked. As expected, we found that
the cells swim with a finite average swimming angle to
the surface plane (Fig. 4). The observed average value
for ✓1 is 5� which for a typical bundle length of 7.5 µm
gives R⇤ = 57 µm. The distribution of average ✓1 is
actually very broad and is reported in Fig. 4b. Using
this distribution we can predict the fraction of trapped
cells for pillars of radius R as the fraction of ✓1 angles
whose corresponding values of R⇤ is lower than R. The
results are shown as a solid line in Fig. 2a where we have
just rescaled predicted fractions to give the correct limit
for infinite radius of curvature. Equations (9) and (5)
also show that the cell swimming velocity plays no role
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The coupling term is now positive and arises from the
displacement of the bundle centre of resistance from the
origin O that we choose to be centred on the cell body:
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The only external force is represented by the reaction
force from the wall. The normal component of that force
will not produce any torque about our origin O. We
cannot exclude in principle the presence of a tangential
friction component but it will just add up to the hydrody-
namic component �TU
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. The overall system is therefore
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where the subscript 1 indicates that we are here consid-
ering the case of flat wall, or in other words an infinite
pillar radius R. Pillar radii are always enough larger
than the cell size so that we can assume that all hydro-
dynamic resistance matrices are negligibly a↵ected by the
small wall curvature. In that situation we can take into
account the finite curvature of the pillar by moving to a
reference frame that rotates around the pillar axis with
an angular speed given by �U
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/R. In this new reference
frame the time derivative of ✓ will be given by:
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The stable value for ✓ now decreases as the pillar radius
becomes smaller:
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There exists a critical value R⇤ for the pillar radius below
which the stable value for ✓ becomes negative, meaning
that the cell swims away from the surface (Fig. 3):
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where, in the last passage, we used the fact that the cell
length 2L is mostly given by the length of the flagellar
bundle `. As shown in (5), the actual value of ✓1 de-
pends on �TU
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, a quantity that is expected to be very
sensitive on the actual value of the gap between the cell
and the wall. Rather then entering into the di�culties
of theoretically predicting �TU

zx

, we prefer to obtain ✓1
from experimental observations and check the theory by
directly verifying relation (9). To this aim we used video
microscopy with higher magnification to determine the
cell orientation during swimming near flat obstacles. 58
individual cells were tracked. As expected, we found that
the cells swim with a finite average swimming angle to
the surface plane (Fig. 4). The observed average value
for ✓1 is 5� which for a typical bundle length of 7.5 µm
gives R⇤ = 57 µm. The distribution of average ✓1 is
actually very broad and is reported in Fig. 4b. Using
this distribution we can predict the fraction of trapped
cells for pillars of radius R as the fraction of ✓1 angles
whose corresponding values of R⇤ is lower than R. The
results are shown as a solid line in Fig. 2a where we have
just rescaled predicted fractions to give the correct limit
for infinite radius of curvature. Equations (9) and (5)
also show that the cell swimming velocity plays no role
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origin O that we choose to be centred on the cell body:

�TU

zx

= L�FU

? sin ✓ (3)

The only external force is represented by the reaction
force from the wall. The normal component of that force
will not produce any torque about our origin O. We
cannot exclude in principle the presence of a tangential
friction component but it will just add up to the hydrody-
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where the subscript 1 indicates that we are here consid-
ering the case of flat wall, or in other words an infinite
pillar radius R. Pillar radii are always enough larger
than the cell size so that we can assume that all hydro-
dynamic resistance matrices are negligibly a↵ected by the
small wall curvature. In that situation we can take into
account the finite curvature of the pillar by moving to a
reference frame that rotates around the pillar axis with
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becomes smaller:
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There exists a critical value R⇤ for the pillar radius below
which the stable value for ✓ becomes negative, meaning
that the cell swims away from the surface (Fig. 3):
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where, in the last passage, we used the fact that the cell
length 2L is mostly given by the length of the flagellar
bundle `. As shown in (5), the actual value of ✓1 de-
pends on �TU
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, a quantity that is expected to be very
sensitive on the actual value of the gap between the cell
and the wall. Rather then entering into the di�culties
of theoretically predicting �TU
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, we prefer to obtain ✓1
from experimental observations and check the theory by
directly verifying relation (9). To this aim we used video
microscopy with higher magnification to determine the
cell orientation during swimming near flat obstacles. 58
individual cells were tracked. As expected, we found that
the cells swim with a finite average swimming angle to
the surface plane (Fig. 4). The observed average value
for ✓1 is 5� which for a typical bundle length of 7.5 µm
gives R⇤ = 57 µm. The distribution of average ✓1 is
actually very broad and is reported in Fig. 4b. Using
this distribution we can predict the fraction of trapped
cells for pillars of radius R as the fraction of ✓1 angles
whose corresponding values of R⇤ is lower than R. The
results are shown as a solid line in Fig. 2a where we have
just rescaled predicted fractions to give the correct limit
for infinite radius of curvature. Equations (9) and (5)
also show that the cell swimming velocity plays no role
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CONFINED SWIMMING

swimming with an image

+



Swimming at a wall

shows time-lapse images of the traffic-like behaviour of cells in
microchannels (see Supplementary Movies).
We wanted to confirm that the motion of cells in microchannels

was analogous to the motion of cells confined between two glass
surfaces; that is, that cells moving clockwise (or to the right) were at
the bottom surface, and that cells moving anticlockwise (or to the
left) were at the top surface.We could not easily observe the surface to
which the cells were closest in agar/ox-PDMS channels 1.3–1.5mm
tall; we then examined taller channels. Using fluorescence
microscopy, we observed HCB437 cells, expressing enhanced green
fluorescent protein, in rectangular (5 mm tall and 10 mm wide) ox-
PDMS channels sealed to glass. Imaging with a 100 £ , 1.4 numerical
aperture, oil objective, we could easily focus on either the floor or the
ceiling of the microchannel and directly observe the surface to which
cells were closest. Cells swimming near the floor of the channel were
moving along the channel wall on their right (with respect to the
direction of movement of the cells); cells swimming near the ceiling
of the channel were moving along the channel wall on their left.
Although most cells swam on the right in the 1.3–1.5 mm tall agar/

ox-PDMS microchannels, occasionally some cells travelled in the
‘wrong’ direction, swimming on the left. To quantify the preference
of cells to swim on the right (or to swim closer to the agar surface
than the ox-PDMS surface), we fabricated ox-PDMS films embossed
with microchannels containing three-way junctions (Fig. 3). Swarmer

cells travelling along the right channel wall entered the right side of the
junction; cells travelling along the left channel wall entered the left side
of the junction. We counted those cells that passed through the
junction and entered each curving side-channel. We defined the
percentage of cells swimming on the right as the number of cells that
entered the right channel divided by the total number of cells that
entered the left or right channels.Wedidnot count the small numberof
cells that continued straight and did not enter either side channel.
Table 1 shows the resulting preference of cells to swim on the right for
different bacterial strains and materials comprising the channels.
Smooth-swimming E. coli cells, which do not tumble, exhibited a

stronger preference to travel on the right side of the channel than did
wild-type cells of E. coli. Smooth-swimming cells stayed aligned with
the channel wall to their right over distances of several millimetres;
whenwild-type cells tumbled in the rectangular channels, they briefly
lost their preference for the right-hand wall. One of the trajectories in
Fig. 2e shows a wild-type cell that tumbled and temporarily moved
away from the microchannel wall. Even smooth-swimming cells did
not swim along the right wall indefinitely. Wobbling or rotational
brownian motion eventually caused cells to separate from the wall
and then to reassociate (apparently randomly) with either the left or
right channel wall. The preference to the right in shallow agar/ox-
PDMS channels for all strains examined indicates that tumbling,
wobbling and/or rotational brownian motion is suppressed more
when cells swim near the agar surface than when cells swim near the
PDMS surface.
Cells continued to swim close to the agar surface even when we

inverted the experimental system. In an inverted system, nutrient
agar formed the channel ceiling and ox-PDMS formed the walls and
floor; here cells preferred to move to the left (when viewed from
above); that is, they swam closer to the top agar surface. This
observation shows that the preferential movement of cells for the
right when agar is the floor of the microchannel is not a result of the
influence of gravity. We observed preferential movement of the cells
only when agar was used as either the floor or ceiling of a composite
microchannel; when the floor of the channel was composed of
oxidized glass or ox-PDMS, and the channel sidewalls and ceiling

Figure 2 | Images of cells in composite agar/ox-PDMSmicrochannels. a, An
oxidized PDMS film with embossed channels seals conformally to an agar
substrate and forms liquid-filled channels into which E. coli swarmer cells
migrate. Within these microchannels (imaged from above), cells that are
closer to the floor of the channel swim clockwise or move to the right.
b–d, Three time-lapse images showing E. coli swarmer (AW405) cells26

moving on the right in confining, rectangular microchannels (1.4 mm tall
and 7mm wide) in which nutrient agar formed the floor of the channel and
an ox-PDMS film formed the walls and ceiling of the channel. b, t ¼ 0 s;
c, t ¼ 0.33 s; d, t ¼ 0.67 s. e, The trajectories of three selected cells between
images b and d are shown. Scale bars, 10mm.

Figure 3 | Quantification of cells displaying a preference to travel to the
right by using a microchannel junction. Cells travelling along the right
channel wall (closer to the floor of the microchannel) enter the right
sidearm; cells travelling along the left channel wall (closer to the ceiling of
the microchannel) enter the left sidearm. Six smooth-swimming E. coli
(HCB437) cells27 are shown entering the right sidearm. Scale bar, 20 mm.
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ceiling of the microchannel and directly observe the surface to which
cells were closest. Cells swimming near the floor of the channel were
moving along the channel wall on their right (with respect to the
direction of movement of the cells); cells swimming near the ceiling
of the channel were moving along the channel wall on their left.
Although most cells swam on the right in the 1.3–1.5 mm tall agar/

ox-PDMS microchannels, occasionally some cells travelled in the
‘wrong’ direction, swimming on the left. To quantify the preference
of cells to swim on the right (or to swim closer to the agar surface
than the ox-PDMS surface), we fabricated ox-PDMS films embossed
with microchannels containing three-way junctions (Fig. 3). Swarmer

cells travelling along the right channel wall entered the right side of the
junction; cells travelling along the left channel wall entered the left side
of the junction. We counted those cells that passed through the
junction and entered each curving side-channel. We defined the
percentage of cells swimming on the right as the number of cells that
entered the right channel divided by the total number of cells that
entered the left or right channels.Wedidnot count the small numberof
cells that continued straight and did not enter either side channel.
Table 1 shows the resulting preference of cells to swim on the right for
different bacterial strains and materials comprising the channels.
Smooth-swimming E. coli cells, which do not tumble, exhibited a

stronger preference to travel on the right side of the channel than did
wild-type cells of E. coli. Smooth-swimming cells stayed aligned with
the channel wall to their right over distances of several millimetres;
whenwild-type cells tumbled in the rectangular channels, they briefly
lost their preference for the right-hand wall. One of the trajectories in
Fig. 2e shows a wild-type cell that tumbled and temporarily moved
away from the microchannel wall. Even smooth-swimming cells did
not swim along the right wall indefinitely. Wobbling or rotational
brownian motion eventually caused cells to separate from the wall
and then to reassociate (apparently randomly) with either the left or
right channel wall. The preference to the right in shallow agar/ox-
PDMS channels for all strains examined indicates that tumbling,
wobbling and/or rotational brownian motion is suppressed more
when cells swim near the agar surface than when cells swim near the
PDMS surface.
Cells continued to swim close to the agar surface even when we

inverted the experimental system. In an inverted system, nutrient
agar formed the channel ceiling and ox-PDMS formed the walls and
floor; here cells preferred to move to the left (when viewed from
above); that is, they swam closer to the top agar surface. This
observation shows that the preferential movement of cells for the
right when agar is the floor of the microchannel is not a result of the
influence of gravity. We observed preferential movement of the cells
only when agar was used as either the floor or ceiling of a composite
microchannel; when the floor of the channel was composed of
oxidized glass or ox-PDMS, and the channel sidewalls and ceiling

Figure 2 | Images of cells in composite agar/ox-PDMSmicrochannels. a, An
oxidized PDMS film with embossed channels seals conformally to an agar
substrate and forms liquid-filled channels into which E. coli swarmer cells
migrate. Within these microchannels (imaged from above), cells that are
closer to the floor of the channel swim clockwise or move to the right.
b–d, Three time-lapse images showing E. coli swarmer (AW405) cells26

moving on the right in confining, rectangular microchannels (1.4 mm tall
and 7mm wide) in which nutrient agar formed the floor of the channel and
an ox-PDMS film formed the walls and ceiling of the channel. b, t ¼ 0 s;
c, t ¼ 0.33 s; d, t ¼ 0.67 s. e, The trajectories of three selected cells between
images b and d are shown. Scale bars, 10mm.

Figure 3 | Quantification of cells displaying a preference to travel to the
right by using a microchannel junction. Cells travelling along the right
channel wall (closer to the floor of the microchannel) enter the right
sidearm; cells travelling along the left channel wall (closer to the ceiling of
the microchannel) enter the left sidearm. Six smooth-swimming E. coli
(HCB437) cells27 are shown entering the right sidearm. Scale bar, 20 mm.
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right when agar is the floor of the microchannel is not a result of the
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only when agar was used as either the floor or ceiling of a composite
microchannel; when the floor of the channel was composed of
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“The flagellar bundle rolls to the left near the surface,
and the cell body rolls to the right near the surface. 
These two motions cause the cell to swim in a
clockwise, circular trajectory”

Escherichia coli swim on the right-hand side
Willow R. DiLuzio1,2, Linda Turner3, Michael Mayer1, Piotr Garstecki1, Douglas B. Weibel1, Howard C. Berg3,4

& George M. Whitesides1

The motion of peritrichously flagellated bacteria close to surfaces
is relevant to understanding the early stages of biofilm formation
and of pathogenic infection1–4. This motion differs from the
random-walk trajectories5 of cells in free solution. Individual
Escherichia coli cells swim in clockwise, circular trajectories
near planar glass surfaces6,7. On a semi-solid agar substrate, cells
differentiate into an elongated, hyperflagellated phenotype and
migrate cooperatively over the surface8, a phenomenon called
swarming. We have developed a technique for observing isolated
E. coli swarmer cells9 moving on an agar substrate and confined in
shallow, oxidized poly(dimethylsiloxane) (PDMS) microchannels.
Here we show that cells in these microchannels preferentially
‘drive on the right’, swimming preferentially along the right wall of
the microchannel (viewed from behind the moving cell, with the
agar on the bottom). We propose that when cells are confined
between two interfaces—one an agar gel and the second PDMS—
they swim closer to the agar surface than to the PDMS surface (and
for much longer periods of time), leading to the preferential
movement on the right of the microchannel. Thus, the choice of
materials guides the motion of cells in microchannels.
Peritrichously flagellated bacteria are propelled by long (about

10 mm), thin, helical filaments distributed randomly over the surface
of the cell body. A reversible rotary motor embedded in the cell wall
drives each filament at its base10,11. If all motors are rotating antic-
lockwise, the flagella bundle together and propel the cell forward in a
‘run’. When one or more of the motors switches to clockwise
rotation, the corresponding flagella unbundle and reorient the cell
in a ‘tumble’12. During a run, the forward thrust generated by the
flagellar bundle is balanced by the viscous drag on the cell body, and
the torque produced by the rotating flagellar bundle is balanced by
the torque due to the counter-rotation of the cell body13. If a cell
swims close to a planar surface, these rotations and the resistance
from the surface affect the direction of movement. The flagellar
bundle rolls to the left near the surface, and the cell body rolls to the
right near the surface. These two motions cause the cell to swim in a
clockwise, circular trajectory4,6,7,14.
Cells swim in circles at surfaces for seconds tominutes, althoughone

might expect them to drift from the surface quickly because of the
effects of rotational brownianmotion and bundle fluctuation (wobble)
on their trajectories5,15. Hydrodynamic interactions cause the extended
interaction of cells with surfaces4,14. Figure 1 shows a schematic
representation of E. coli cells swimming near two horizontal surfaces.
The cells swim in clockwise, circular trajectories at each surface: the
trajectories of cells close to the bottom surface seem to follow clockwise
paths, and the trajectories of cells close to the top surface seem to follow
anticlockwise paths6,7,15. (A clockwise trajectory appears anticlockwise
when viewed from the opposite side.) The direction of curvature of the
trajectory of the cell therefore indicates whether the cells are swimming
closer to the top surface or to the bottom surface.

We have developed a new technique for examining the movement
of individual bacteria on nutrient agar by confining the cells in
shallow microchannels to constrain their motion to two dimensions.
Using soft lithography16, we fabricated thin (150 mm thick), flexible,
gas-permeable17 films of PDMS embossed with grooves. The surface
of the filmwas rendered hydrophilic by treatment with an air plasma
(the advancing contact angle of water on the PDMS film after
treatment was 10–208). We placed the oxidized PDMS (ox-PDMS)
film on the agar a fewmillimetres from the edge of a swarm of E. coli9.
The film sealed conformally to the agar substrate and formed
microchannels in which the bottom agar surface formed the floor
of the channel, and the ox-PDMS film formed the sidewalls and
ceiling (Fig. 2a). An aqueous solution of nutrients from the agar
substrate wetted and filled the hydrophilic microchannels. Obser-
vation of small, suspended polystyrene beads in the channel showed
that no net flow of fluid occurred in themicrochannels once they had
filled. Individual cells from the swarm migrated into the micro-
channels. Once they entered the liquid-filled microchannels, they
separated from other swarmer cells and swam independently.
In rectangular agar/ox-PDMS microchannels that were only

slightly taller than the width of one cell (1.3–1.5 mm tall and 7–
10 mm wide), most E. coli cells moving in either direction swam
preferentially along the channel wall to their right (when viewed from
above). The swimming of cells in a clockwise direction (movement to
the right) implies that cells are swimming closer to the bottom
surface (agar) than to the top surface (ox-PDMS) (Fig. 1). This
ordered movement to the right in opposite directions along the two
walls resembles that of cars driving along a two-way street. Figure 2b–d

LETTERS

Figure 1 | Cells swim in clockwise, circular trajectories at solid, planar
surfaces. When a cell executes a run, all flagella in the bundle rotate
anticlockwise (when viewed from behind) and the cell body counter-rotates
in a clockwise direction.When viewed from above, the cell trajectories at the
bottom surface appear clockwise and the cell trajectories at the top surface
appear anticlockwise.
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TOP VIEW

Choosing the right materials we can 
have bacteria swimming closer to the floor
and then preferentially on the right

SORTING IN MICROFLUIDIC CHANNELS

the y direction is Lk ¼ nl. The assumption of sphericity,although not completely realistic for the cell body of E. coliwhich is more like a 2:1 prolate ellipsoid, was made in orderto use well-known mobility formulae, and we expecttherefore our results to be correct within a shape factor oforder unity. Due to the action of rotary motors, the bundle isrotating in the counter-clockwise direction (viewed frombehind) with an angular velocity v ¼ – v ey relative to thebody, with v . 0 (see Fig. 3). We denote by U ¼ (Ux, Uy,Uz) and V ¼ (Vx, Vy, Vz) the instantaneous velocity androtation rate (measured from the center of the cell body),respectively, of the bacterium.

Physical picture

In the absence of a nearby wall, the bacterium swims ina straight line, U ¼ Uy ey, and rotates along its swimming

axis, V ¼ Vy ey. The velocity Uy . 0 is obtained bybalancing the propulsive force of the helical bundle with theviscous resistance on the whole bacterium and the rotationrate Vy . 0 is found by the balance of viscous momentsaround the y axis (see Appendix B).
What changes when the microorganism is swimming neara solid surface? Both the cell body and the helical bundlecontribute together to a rotation of the bacterium around thez axis (see notations in Fig. 3; see also (32)).
First, as the cell body is near the surface, when it rotatesaround the y-axis at a rate Vy . 0, there is a viscous forceacting on the cell body in the x-direction, F 1

x ex, with F 1
x.0(see diagram on Fig. 4 a). This is a standard hydrodynamicresult (28) and an intuitive way to think about this result isto picture a ball in a liquid film near a surface; pushingthe ball along the surface will also make it rotate, and viceversa.

The bundle of flagella is also acted upon by a net force inthe x-direction, induced by the presence of the wall. Since thebundle takes the shape of a helix, parts of the bundle arelocated close to the surface and parts are located further away(see Fig. 4). The local drag coefficient on an elongatedfilament decreases with increasing distance from the nearbysurface (see details below), which means that the parts of thebundle that are close to the surface will be subjected to alarger local viscous force compared to portions of the helixlocated further away from the surface. As the helical bundlerotates counter-clockwise around the y axis (viewed frombehind), the portions of the helix that are closer to the surfacehave a positive x velocity, and therefore the net viscous forceacting on the bundle,F 2
x ex, is negative, F 2

x , 0 (see diagramin Fig. 4 b). Note that since the swimming bacterium asa whole is force-free, we have necessarily F 2
x ¼ "F 1

x.As a consequence of the viscous forces acting on both thehelical bundle and the cell body and their spatial distribution,

TABLE 1 List of symbols used in this article and their meaning
Symbol Meaning

U Velocity of the cell, U ¼ (Ux, Uy, Uz).V Rotation rate of the cell, V ¼ (Vx, Vy, Vz).U Planar swimming velocity of the bacteria, U ¼ U2
x1U2

y

! "1=2
.R Radius of curvature of the trajectory, R ¼ U/jVzj.a Equivalent sphere radius, given by Eq. 1.

w, f Width and aspect ratio of the cell.
d Distance between the center of the cell and the surface.h Gap thickness between the cell and the surface.r Radius of the flagella filament (bundle).
b, l Radius and wavelength of the helix.
n Number of wavelength in the flagella.
Lk Length of the flagella Lk ¼ nl.
v Rotation rate of the flagella (in the frame attached

to the cell body).
F 1

x; F 2
x Local forces responsible for the cell rotation near the

surface (see Fig. 4).
F F ¼ (Fx,Fy,Fz).
L L ¼ (Lx,Ly,Lz).
M, W Mobilities of the cell body; M (W) is non-zero

(zero) away from the surface.N, V Mobilities of the flagella; N (V) is non-zero (zero)
away from the surface.

Mab
ij Typical notation for the viscous mobilities, Mab

ij ¼ @ai=@bj .a Either F, for force, or L, for torque.
b Either U, for velocity, or V, for rotation rate.ck, c? Local drag coefficient for motion parallel and perpendicular

to local length.
uk, u? Component of local velocity parallel and perpendicular to

local length.
m Shear viscosity of the liquid.
ck Value of ck at a distance d to the surface.
f (z) Variation of ck from ck, that is f ðzÞ ¼ ck=ck.A, B Mobility matrix for the cell body and the helical

flagellar bundle.
h0, a1, a2 Parameters for the linear increase of h with a (Eq. 25).e Slenderness of the helical flagella, e ¼ 2pb/l.s Curvilinear coordinate along the flagella.I, J Integrals involved in the flagellar mobility calculations

(Eq. 29).

FIGURE 3 Setup and notations for the mechanical model of E. coliswimming near a solid surface.
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physical picture for a clockwise motion. However, no simple
analytical model was proposed and a numerical integration
was required to obtain the cell trajectories.
The goal of this article is to provide a hydrodynamic

model for the motion of E. coli near solid boundaries. We
first summarize our experiments to obtain a new set of data
on swimming speed and circular trajectories for E. coli strain
HCB437 near solid surfaces. We then present our geo-
metrical model for E. coli, and the physical picture for the
circular trajectory of the bacterium near a no-slip surface,
based on the change in hydrodynamic resistance of elements
along the cell body due to the nearby surface. Using
resistive-force theory, we calculate the trajectory of the
bacterium. Since the full model requires a matrix inversion
to be evaluated, we also present an approximate analytical
solution for the trajectory. In particular, we show that the
circular motion is clockwise when viewed from above the
surface, and that the cells need to swim into the surface as
a natural consequence of force-free and torque-free swim-
ming. We then illustrate the results of our two models (the
full model and its analytical approximation), show their
dependence on various geometrical parameters of the cell,
and compare the models with our experiments. We find that
our models are consistent with experimental swimming
speeds and radii of curvature of the circular motions, and that
they allow us to obtain an estimate for the relation between
the size of the bacterium and its distance to the surface. The
values of the various hydrodynamic mobilities used in
the model are presented in Appendix A, and the cell tra-
jectory far from a surface is given in Appendix B.

EXPERIMENT

We examined a dilute suspension of smooth-swimming (i.e.,
non-tumbling) E. coli cells (HCB437) (22) in an observation
chamber. The cells were observed from outside the chamber
above the surface, swimming with counter-clockwise tra-
jectories; consequently, when viewed from within the liquid
(what we will refer to as ‘‘above the surface’’ in the re-
mainder of the article), they are performing clockwise trajec-
tories. In Fig. 1, we provide superimposed video images
showing the curved trajectories that cells follow when swim-
ming near the glass surface.

Materials and methods

Preparation of motile cells

E. coli strain HCB437 (22) used in these studies is a smooth-
swimming strain that is deleted for most chemotaxis genes.
During cell growth, cells double their length and then divide
at their approximate midpoint (septate), while maintaining
a constant width. The length of cells naturally vary depend-
ing on the progress of cells through the growth cycle (23).
Media components were purchased from Difco (Tucker,

GA) or Sigma (St. Louis, MO). Saturated E. coli cultures
were grown for 16 h in tryptone broth (1% tryptone and 0.5%
NaCl) using a rotary shaker (200 rpm) at 33!C. Saturated
cultures were frozen at !70!C in 15% glycerol. Motile E.
coli cultures were obtained by diluting 50 mL of the thawed
saturated culture into 5 mL of fresh tryptone broth, and
grown in 14 mL sterile, polypropylene tubes at 33!C on
a rotary shaker (150 rpm) for 3.5 h. Cells were washed by
three successive centrifugations at 2000 g for 8 min and were
resuspended into motility buffer (24) (1 mM potassium
phosphate, pH 7.0, 0.1 mM Na-EDTA) containing 10 mM
glucose and 0.18% (w/v) methylcellulose (Methocel 90;
Biochemika, Fluka, St. Louis, MO). Glucose was added to
maintain motility in an anaerobic environment and methyl-
cellulose was added to reduce the tendency of cells to wobble
(25) (solutions of methylcellulose are Newtonian at concen-
trations ,0.5% (26)). Filamentous cells were obtained by
growing motile cells for 3.5 h as described above, adding
50 mg/mL cephalexin to the culture, and then growing cells
an additional 0.5 h (27). Filamentous cells were then washed
as described above.

Observation of swimming cells

A volume of 50 mL of the washed cell suspension (;106

cells/mL) was added to an observation chamber constructed
from two glass coverslips and double-sided tape (Scotch,
permanent; 3M, St. Paul, MN). The chamber dimensions
were ;1-cm wide, ;2-cm long, and ;80-mm high. The
microscope coverslips were alternately rinsed with soap and
DI water, DI water, ethanol, DI water, and then treated with
an air plasma for 1 min at 1–2 Torr (SPI Plasma Prep II;
Structure Probes/SPI Supplies, West Chester, PA). The
observation chamber was heated to 32!C using a heated
microscope stage (Research Instruments, Singapore). Cells
swimming near the upper glass coverslip were observed using
a Nikon Eclipse E400 upright, phase-contrast microscope
(Nikon, Marunouchi, Tokyo). Video images were acquired
using a 203 or 403 Nikon phase objective and a mono-
chrome CCD camera (Model No. V1070; Marshall Elec-
tronics, El Segundo, CA) connected to a digital video

FIGURE 1 Superimposed phase-contrast video microscopy images show

E. coli cells (HCB437) swimming in circular trajectories near a glass surface.

(Left) Superposition of 8 s (240 frames) of video images. (Right) Typical
superposition of 2 s (60 frames) of video images that was used to analyze the
length and width of cells, the swimming speed of cells, and the radius of

curvature of the trajectories.
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although the approximate analytical model can lead to large
errors for the radius of curvature of the trajectory (by up to
50%). For both models, the dependence of the swimming
velocity, U, on the four parameters is found to be consistent
with the increase of the propulsive viscous force with b, r, l,
and n (see the values of the mobilities as calculated in
Appendix A). The radius of curvature decreases with r,
consistent with an increase in the hydrodynamic interactions
with the nearby surface as described by Eq. 7. Furthermore,R
decreases with b, confirming the important role of the viscous
resistance on parts of the helix that are close to the surface
(whose distance to the surface decreases with b) in inducing
the torque on the cell in the z-direction. Finally, the increase of
R with l and n probably follows that of U, through Eq. 12.

Comparison experiments/models using
a relationship between cell size and gap thickness

As was observed earlier, the value of the radius of curvature
from the model depends strongly on the unknown gap thick-
ness h. Returning to the comparison with the results of our
experiments, we see that data for larger cells tend to be more
consistent with the model for large values of h (Figs. 5 and 6).
Thuswe propose here that, if we suppose that all bacteria have
the same geometrical characteristics, fb, r, l, Lkg, our
hydrodynamic model could be used to estimate the relation
between the typical cell size, a, and its steady-state distance to
the wall, h, by fitting the model to the experimental data of
Fig. 2, which show an increase ofRwith cell size. The results
are illustrated in Fig. 7, where we have plotted together the
results of the experiments with two predictions of the full
hydrodynamic model (Eq. 11) where the cell parameters are
given above and where we assume a linear relationship
between a and h,

hðaÞ ¼ h0 1
a$ a1

a2

! "
h1: (25)

The parameters for this fit are h0 ¼ 10 nm, a1 ¼ 0.81 mm,
a2 ¼ 0.35 mm, and the value of h1 is chosen to lead to the
same correlation (slope) between the results of the model and
the experimental data (a, h1 ¼ 119 nm) or the best possible
least-square difference between the model and the data
(b, h1 ¼ 48 nm).

CONCLUSION

We have presented a hydrodynamic model for the swimming
of E. coli near solid boundaries and compared it to a new set of
measurements of cell velocities and trajectories. We have
shown that force-free and torque-free swimming was respon-
sible for the clockwise circular motion of the cells,Vz , 0, as
well as for their hydrodynamic vertical trapping close to the
surface, that is,Vx , 0 and Uz , 0. This trapping is probably
responsible for the extended period of time during which cells
are observed to remain near surfaces, which enhances the
probability of cell adhesion to substrates. Determining the
mechanisms responsible for the relationship between h and
a we inferred from the measurements would be valuable.
The main assumptions made in this article, and which

illustrate the differences between real swimming E. coli cells
and our model, are the following:

1. We have replaced the bundle of several flagella by a
single rigid helix; according to the results of Kim et al.
(31), this might not be a large source of error.

2. We have assumed that the cell body was spherical; this
assumption is probably more important, and an analysis
usinganonspherical headmight lead toanexplanationof the
increase of the distance to the wall, h, with the cell size.

3. We have ignored all interactions between the cell body
and the flagella.

4. We have ignored Brownian motion.

Although relaxing these assumptions would improve on
the agreement between theory and experiments, we do not
expect it would change the physical picture given in this
article for the circular motion. Including the presence of a
second (top) boundary should also modify the cell trajec-
tories (47). If the surface was a perfectly-slipping interface
(such as the free surface between air and water) instead of
a no-slip surface, the change of the direction of the image
system for a point force (48) should lead to bacteria swim-
ming in circles, but in a counterclockwise direction (X.L. Lu,
University of Pittsburgh, private communication).
Finally, our experimental finding that the radius of cur-

vature of cell trajectories depends on the size of the cell,
suggests a new strategy for sorting cells by size using hy-
drodynamic interactions.

APPENDIX A: CELL MOBILITIES

We present in this Appendix the values of the hydrodynamic mobilities of
the bacteria. First, since we have h % a, the lubrication approximation can

FIGURE 7 Best fit to the experimental data (8) by an h(a) law in the full

hydrodynamic model (numerical solution of Eq. 11, straight line), as given
by Eq. 25. The relation between h and a is chosen to obtain the same linear
slope for the results of the model and the experimental data (a) and the best

least-square difference between the model and the data (b).
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flagella have radius of ;12 nm (1,12) and there are between
two and six flagella per bundle (four, on average). Results of
RFT away from surfaces in Chwang et al. (38) show that
appropriate velocities and rotation rates are obtained if r is
between 100 nm and 200 nm (46). However, the radius of
a tight bundle of seven flagella is approximately r ! 20 nm
(13,46), and comparison between SBT calculations and
Image Velocimetry experiments in Kim et al. (31) has shown
that the flow generated by a two-filament bundle in steady
state is the same as the flow generated by a single rigid helix
with radius twice that of individual filaments. We chose in
this article to use r ¼ 50 nm as an intermediate value; the
dependence of the results on the value of r will be addressed
below. For the cell radius a, we take the equivalent sphere
radius a that has the same viscous resistance as the prolate
ellipsoid of measured cell dimensions translating along its
axis of symmetry (28) (as explained above); the experimental
values of a vary from 0.81 to 1.16 mm. The only parameter in
the model whose value is unknown is the gap thickness h.
The minimum distance cells can swim from the surface is
;10 nm because of the protrusion of the flagellar hook from
the cell body (personal communication, R.M. Ford). Values
of h have been measured to be 30–40 nm (8) . To compare
the model with our experimental data, we will assume h to be
in the range from 10 to approximately 100 nm.

Comparison experiments/models with a fixed
gap thickness h

In this section, we fix the value of the gap thickness to be the
same for all cells, so that the center of each cell is located at
the same distance d ¼ h 1 w/2 from the nearby surface.
Despite the scatter in our experimental data, we find that the
results of the two hydrodynamic models (numerical solution
of Eq. 11 and analytical solution from Table 2) are com-

parable and are consistent with our experimental data, both
for the radius of curvature of the trajectory, R ! 15 to 35
mm, and the swimming speed, U ¼ (U2

x1U2
yÞ

1=2 ! 20 to 25
mm/s; both set of values compare also favorably with past
experimental results as described in the Introduction.
The results comparing experiment and theory are il-

lustrated in Fig. 5. Results are displayed for two values of h,
h ¼ 10 nm (top) and h ¼ 60 nm (bottom). In both cases, the
values of the flagella rotation speeds, v, were chosen to lead
to the best least-square fit of the measured cell velocities by
the full hydrodynamic model; we obtain v ¼ 156 Hz when
h ¼ 10 nm and v ¼ 127 Hz when h ¼ 60 nm. These values
are consistent with the measurements of Vigeant et al. (8)
and with typical values for the rotation rate of flagella in
E. coli (2,11,12). The overall best-fit to the data by the full
model with a constant h is obtained for h ¼ 16 nm and
v ¼ 148 Hz.
We now discuss the difference in trends between the

models and the experimental data. The full hydrodynamic
model predicts that the swimming speed, U, decreases with
the cell size a, in agreement with our measurements. This
result is a consequence of the increase of the viscous resis-
tance with the cell size. However, the model predicts that,
when the gap thickness h is fixed, the radius of curvature,R,
should remain approximately constant, in contrast with the
results of our experiments. Indeed, as the cell size increases,
so does the distance between the helical flagella and the wall,
so the rotation-inducing torque decreases, leading to a de-
crease in the rotation rate of the bacteria. In the range of
parameters studied here, both the swimming velocity and the
rotation rate decrease by approximately the same amount
with an increase in a, leading to an approximately constant
value for R. Since the experimental data display an increase
of the radius of curvature with cell size, we will explore the
possibility of a relationship between h and a below.

FIGURE 5 Comparison between the re-

sults of the experiments (8), the full

hydrodynamic model (numerical solution
of Eq. 11, n; and best fit, straight line) and
the simplified model (Table 2, dash-dotted
line) with a fixed gap thickness h. (Top)
h ¼ 10 nm and v ¼ 156 Hz: (a) radius of
curvature, R, and (b) swimming velocity,

U, as a function of the bacterial radius a.
(Bottom) h ¼ 60 nm and v ¼ 127 Hz: (c)
radius of curvature, and (d) swimming ve-

locity as a function of the bacteria radius a.
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where rf ¼ ð&l=2& L=2; 0; 0Þ. Inserting Eq. (2) into (1)
we can obtain expressions for the forces and torques acting
on each unit. The total force F and torque T acting on the
composed object can be readily written in the approxima-
tion where we neglect hydrodynamic interactions between
the two units and assume that resistance matrices are the
same as for the isolated units:

F ¼ Fb þ Ff; T ¼ Tb þ Tf þ rf % Ff: (3)

Once the geometry of the two units is specified, the corre-
sponding drag and coupling tensors are known so that (3)
provides six linear relations connecting the components of
the total force and torque to the seven variables: u0x, u

0
y, u

0
z ,

!0
y, !

0
z , !

b
x , !

f
x . The whole swimmer has to be force free

and torque free so that the resistance problem (3) directly
provides six equations in seven unknowns which we use,
for example, to express the full object dynamical state as a
function of the rotational speed of the flagellum. When a
bacterium swims in the proximity of a wall, flow fields are
furthermore subject to the boundary conditions imposed by
the wall. A perfect-slip boundary condition requires a
vanishing z component of flow and vanishing z gradients
at the interface. This condition can be easily satisfied for a
system of point forces by considering the bulk flow pro-
duced by adding to each real force its mirror reflection
through the interface plane. Swimming close to a free
surface is then approximately equivalent to having a spec-
ular image bacterium swimming on the opposite side. The
physical picture is then that of a bacterium swimming in
the flow field produced by its image. Such an image will
move with the same speed of the original cell, but the
image body and bundle will rotate in opposite direction
with respect to the real bacterium. The flow produced by
the two rotating units will advect the cell body in the
positive y direction and the bundle in the negative y direc-
tion, resulting in a rotation of the bacterium in the anti-
clockwise direction when viewed from above the surface
(Fig. 3). Bacteria will then trace circular runs in anticlock-
wise direction until a tumble event reorients the cell. The
flow field produced by the image cell body will also tilt its
velocity vector away from the body axis. We will now take
into account the hydrodynamic interactions between each
unit and its own image separately. Cross correlations, such
as that between bundle image and real body, are found to
have a negligible effect on the in plane (xy) dynamics and
are neglected here. However, they are mainly responsible
for hydrodynamic attraction between the whole bacterium
and its image and have to be included to reproduce hydro-
dynamic entrapment to the surface [7]. Hydrodynamic
interactions are easily described in a mobility formulation
and then get the corrected resistance tensors by inversion.

Each unit will find itself in the flow field produced by its
own image. We expand such a flow field about the unit
center as a rigid translation u and a rotation !:

U ! ¼ M! ' F! þD! ' T! þ u!;

!! ¼ K! ' T! þ ðD!ÞT ' F! þ!!;
(4)

where M and R are, respectively, the translational and
rotational mobility tensors, D is the coupling tensor in
the mobility formulation. Anisotropic bodies also tend to
align with the principal axis of strain [18]. In our geometry
however, this alignment is automatically fulfilled. The
velocity u will linearly depend on the total force F0! and
torque T0! applied on the image units:

u ! ¼ GuF ' F0! þGuT ' T0!;

!! ¼ G!T ' T0! þG!F ' F0!:
(5)

If we call " ¼ diagð1; 1;&1Þ the mirror reflection opera-
tor, we have F0! ¼ ! ' F! and T0! ¼ &! ' T!. The minus
sign in the second equation comes from the fact that
torques are pseudovectors. Substituting in (5) and the result
in (4) we obtain the two units mobilities corrected for the
presence of the corresponding images:

M! ¼ M! þGuF ' !; K! ¼ K! &G!T ' !;

D! ¼ D! &GuT ' !:
(6)

The corresponding resistance matrices can be obtained
by inversion of the block matrix:

"! C!

C!T R!

 !
¼ M! D!

D!T K!

 !&1

: (7)

FIG. 3 (color online). Side, rear, and top views of the swim-
ming bacterium and corresponding image bacterium on the
opposite side of the interface. Solid green and dotted red arrows
in rear and top views represent the flows produced by the rotating
images of, respectively, the flagellar bundle and the body.
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IMAGE BODY AND FLAGELLUM GENERATE A “BACKGROUND FLOW”

Once the resistance matrices are obtained we can calcu-
late the total force and torque on the composed object and
solve dynamics by setting the force and torque to zero. We
approximate the cell body as a prolate ellipsoid whose
mobility tensors are known analytically [19]. The flagellar
bundle is modeled as a helical slender body of thickness
2r0 ¼ 20 nm, length l ¼ 7:5 !m, pitch " ¼ 2:3 !m, and
radius d ¼ 0:2 !m [14]. The corresponding resistance
matrix is calculated analytically with resistive force theory
(see supplementary material [20]). As we already qualita-
tively described, the tendency to swim in anticlockwise
circular trajectories has to be mainly attributed to the y
component of the flows produced by image bodies. The
largest contribution to that component comes from the x
component of the image torques. If we remind the reader
that both units are elongated bodies with the major axis
aligned parallel to a close interface, we soon realize that a
point rotlet would be a too crude an approximation for the
flow propagatorGuT . Therefore we choose to represent the
flow produced by such image torques as the near field flow
produced by a cylinder of length ‘# that is [21]

G uT
yx ¼ 1

8$!h‘#
: (8)

That is the most crucial assumption to reproduce experi-
mental data. Once that component is set, practically any
reasonable choice for the remaining components of flow
propagators has only a tiny effect on the observed quanti-
ties. Most of those components vanish for symmetry rea-
sons, while those applied to y and z components of forces
and torques will in general have a small effect compared to
those applied to the much bigger x components. A very
simple choice is that of using point propagators for all
other nonzero components. With that choice we are able
to get a very good quantitative agreement with experimen-
tal data as shown by solid black lines in Figs. 2(b) and 2(c).
The most sensitive parameter is also the least accessible
one, which is the gap between body and interface (h" b).
Gap estimates for solid walls have been reported to be
below 100 nm [22], although more recent numerical simu-
lations seem to suggest values as large as a few hundreds of
nanometers [23]. We find the best agreement when using a
gap value of 350 nm. A large gap value could also com-
pensate for the assumption of a perfect-slip boundary
condition or the possible reduction of image flows due to
a layer of increased viscosity.

In conclusion, we have shown that E. coli bacteria swim-
ming in the proximity of a free liquid interface tend to
follow anticlockwise circular trajectories. Such behavior,
already hypothesized in [17], can be quantitatively de-
scribed through the hydrodynamic interaction of the real
bacterium with its mirror image swimming on the opposite
side of the interface. In this model the cell body rotation is
mainly attributed to the advection of the real bacterium by
the flows produced by the two counterspinning images.
In particular, the flow due to the spinning of the cell body

decreases as the inverse of cell body length. As a conse-
quence of this reduced flow, both the curvature and tilt of the
body axis increase for shorter cells leading to a strong size
dependent deflection mechanism. It would be interesting to
check whether such a behavior is maintained when swim-
ming on superhydrophobic surfaces where most of the
surface area is again a liquid-gas interface. In this case,
one could think of new strategies to sort and direct bacterial
motions in microchannels by modulating the slip length on
the channel walls.
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[Fig. 1(c)]. In Fig. 2 we report those parameters as a
function of cell body length L. Bacterial speeds U have a
large variability and an average trend that brings the speed
from about 20 to 30 !m=swhen the length L goes from 1.5
to 4:5 !m. Such a finding is against what one would
predict from the simple hydrodynamic argument that a
larger cell body experiences a larger viscous drag and
then moves slower when the same flagellar bundle propels
it. However, the assumption of an equal flagellar bundle for
every cell can be too crude. It is found that the number of
flagella can vary [14] and that their average number can
increase with increasing body length [15]. Those observa-
tions also explain the large fluctuations in speed [Fig. 2(a)].
On the other hand, the trajectory radius R and tilt angle "
are purely geometrical parameters, deriving from velocity
ratios and then not depending on the torque applied by the
flagellar motor and on viscosity. A variable number of
flagella can only affect those two parameters by changing
the geometry of the bundle. We will assume in the follow-
ing that such geometrical variations have negligible ef-
fects. As already observed in the proximity of a solid
wall, the average radius of curvature R increases almost
linearly with L as reported in Fig. 2(b), leading to more
straight runs for longer cells. The tilt angle " of body axis
with respect to instantaneous velocity decreases with L,
again extrapolating to a linear run for large L. The ob-
served phenomena could be modeled by a boundary ele-
ment method [16]. A much simpler theoretical approach is
based on the composition of resistance matrices, where
body and flagellum are treated as two hydrodynamically
independent units coupled by rigid constraints [17]. In the
case of a solid surface [17] a spherical shape was assumed
for the cell body, and the observed increase of the trajec-
tory radius on cell length could only be recovered assum-
ing a gap between cell and wall that increased with body
length. We model our swimmer as composed of two rigid

subunits, the cell body (b) and flagellar bundle (f). The two
units are rigidly connected but can rotate around a common
axis x̂ when a torque is applied by flagellar motors. The
motion of each unit can be decomposed into a linear trans-
lation of a reference point, usually a center of symmetry,
with instantaneous velocity U and a rotation around the
same point with angular velocity !. Linearity of Stokes
equations guarantees that the corresponding total force F
and torque T acting on the unit are linearly related to the
components of velocity through the resistance tensors:

F # ¼ "# " U# þC# "!#;

T# ¼ R# "!# þ ðC#ÞT " U#;
(1)

where the superscript # can be b or f, respectively, for cell
body or flagellar bundle. The two symmetric tensors "#

and R# are, respectively, the translational and rotational
drag tensors. The coupling tensor C# is nonzero only for
skewed bodies, like the helical flagellar bundle, but always
vanishes at the center of an orthotropic object like the
cell body. Choosing the cell body center as the reference
point O, the full dynamical state is described by the linear
speed of point O U0 ¼ ðu0x; u0y; u0zÞ, the axis angular speed
!0

? ¼ ð0; !0
y; !

0
zÞ, and the two axial rotational speeds

FIG. 2. Cell length (L) dependence of swimming velocity (U),
average curvature radius (R) of trajectories, and average tilt
angle (") of body axis from local trajectory tangent line. Gray
circles are raw data, white circles are binned data, and solid
black lines represent theoretical predictions when considering a
nearby swimming image.

FIG. 1 (color online). (a) Thresholded bacteria image and
corresponding covariance ellipsoid. (b) Superposition of frames
showing the trajectory of a single cell swimming above a liquid-
gas interface. The time interval between frames is 0.16 s. For
most of the trajectory the cell axis (black line) is tilted away from
the local trajectory tangent. (c) Schematic representation of the
main parameters extracted from each trajectory.

PRL 106, 038101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 JANUARY 2011

038101-2

[Fig. 1(c)]. In Fig. 2 we report those parameters as a
function of cell body length L. Bacterial speeds U have a
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from about 20 to 30 !m=swhen the length L goes from 1.5
to 4:5 !m. Such a finding is against what one would
predict from the simple hydrodynamic argument that a
larger cell body experiences a larger viscous drag and
then moves slower when the same flagellar bundle propels
it. However, the assumption of an equal flagellar bundle for
every cell can be too crude. It is found that the number of
flagella can vary [14] and that their average number can
increase with increasing body length [15]. Those observa-
tions also explain the large fluctuations in speed [Fig. 2(a)].
On the other hand, the trajectory radius R and tilt angle "
are purely geometrical parameters, deriving from velocity
ratios and then not depending on the torque applied by the
flagellar motor and on viscosity. A variable number of
flagella can only affect those two parameters by changing
the geometry of the bundle. We will assume in the follow-
ing that such geometrical variations have negligible ef-
fects. As already observed in the proximity of a solid
wall, the average radius of curvature R increases almost
linearly with L as reported in Fig. 2(b), leading to more
straight runs for longer cells. The tilt angle " of body axis
with respect to instantaneous velocity decreases with L,
again extrapolating to a linear run for large L. The ob-
served phenomena could be modeled by a boundary ele-
ment method [16]. A much simpler theoretical approach is
based on the composition of resistance matrices, where
body and flagellum are treated as two hydrodynamically
independent units coupled by rigid constraints [17]. In the
case of a solid surface [17] a spherical shape was assumed
for the cell body, and the observed increase of the trajec-
tory radius on cell length could only be recovered assum-
ing a gap between cell and wall that increased with body
length. We model our swimmer as composed of two rigid

subunits, the cell body (b) and flagellar bundle (f). The two
units are rigidly connected but can rotate around a common
axis x̂ when a torque is applied by flagellar motors. The
motion of each unit can be decomposed into a linear trans-
lation of a reference point, usually a center of symmetry,
with instantaneous velocity U and a rotation around the
same point with angular velocity !. Linearity of Stokes
equations guarantees that the corresponding total force F
and torque T acting on the unit are linearly related to the
components of velocity through the resistance tensors:

F # ¼ "# " U# þC# "!#;

T# ¼ R# "!# þ ðC#ÞT " U#;
(1)

where the superscript # can be b or f, respectively, for cell
body or flagellar bundle. The two symmetric tensors "#

and R# are, respectively, the translational and rotational
drag tensors. The coupling tensor C# is nonzero only for
skewed bodies, like the helical flagellar bundle, but always
vanishes at the center of an orthotropic object like the
cell body. Choosing the cell body center as the reference
point O, the full dynamical state is described by the linear
speed of point O U0 ¼ ðu0x; u0y; u0zÞ, the axis angular speed
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FIG. 2. Cell length (L) dependence of swimming velocity (U),
average curvature radius (R) of trajectories, and average tilt
angle (") of body axis from local trajectory tangent line. Gray
circles are raw data, white circles are binned data, and solid
black lines represent theoretical predictions when considering a
nearby swimming image.

FIG. 1 (color online). (a) Thresholded bacteria image and
corresponding covariance ellipsoid. (b) Superposition of frames
showing the trajectory of a single cell swimming above a liquid-
gas interface. The time interval between frames is 0.16 s. For
most of the trajectory the cell axis (black line) is tilted away from
the local trajectory tangent. (c) Schematic representation of the
main parameters extracted from each trajectory.
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Summary 1

SELF-PROPULSION
•flagellar propulsion provides a simple strategy for swimming

in low Re and fluctuating environments

CONFINED SWIMMING
•wall entrapment is hydrodynamic in origin and can be

reduced using convex walls with small curvature radius

•wall-trapped bacteria swim to either right or left hand 
depending on the surface boundary condition (stick/slip)


