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NMOTIVATIONS

Phytoplankton is composed by one-celled organisms able to perform phototaxis
It is at the basis of the oceanic food web

It 1s the source of about 50% of the oxygen “produced” on the earth

It is fundamental for carbon cycle

Many phytoplankters are able to swim as a way to control their position in the water column
(some others control their buoyancy)

Doing so allows them to stay in the “photic” layer...

Phytoplankton is “patchy” at several scales which affects:

- exploitation of nutrients

- predation

- mating (when reproducing sexually)

- access to light (mutual shading...)
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“ecological” causes Patchiness at mm/cm-scale

influenced by flow

(e.g., presence and
distribution of nutrients)

Motile phytoplankton more patchy
than non-motile one
A fluid-dynamic explanation?

Still, some large formations

may have other origins See also F Toschi’s and I Pagonabarraga’s

Algal blooms .
(N. scintillans in NZ) (more about this later...) works (and talks in this conference)

for related phenomena



NMODEL GYROTACTIC ALGAE

7] ) . Chlamydomonas
- “bottom heavy” swimmers, e.g. Chlamydomonas Heterosigma akashiwo ~ Dunaliella tertiolecta reinhardtii

- dilute -> no interaction, no feed-back on the fluid
- Translational and rotational diffusion negligible 0
- Modulus of the swimming velocity constant v

— =u(X,t) + vsp

dp 1 1. ~ 1
d ~ a5 [k~ (PP +5wxp  |p|=1

il +
GRAVITAXIS fluid
vorticity

vs ~ 100pm/s

Vkinematic viscosity

v . ggravitational acceleration

JO Kessler (Nature 1985)
T Pedley and JO Kessler (Annu. Rev. Fluid. Mech. 1992)
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NMODEL GYROTACTIC ALGAE
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EXPERIMENT IN VORTICAL FLOW

Durham et al. Nature Comm. 4, 2148 (2013)

Steady vortical flow in microfluidic apparatus (at MIT) Density of Heterosigma akashiwo
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Cells accumulate in the downwelling
region and slightly in the vortex cores

What happens in real turbulent flows ?

numerical simulation

normalized cell concentration



DIRECT NUMERICAL SIMULATIONS

Durham et al. Nature Comm. 4, 2148 (2013)

Simulation of the complete set of equations

Resolutions up to 2563
Three dimensionless numbers

vV
Re:@ (I):—S

A dissipative dynamical system
Phase space contraction rate
10X, 0pi d—1
0X; T opi 2, IP=

=1

Clustering on a fractal set

¥ = Bwms

%—1;+u-Vu=—Vp+VV2u—|—f

dx

= u(x,t) + vsp

dp 1 714 A 1

P _ " k- (k- ] -

dt 23[ (k-p)p| + 5w xp




DIRECT NUMERICAL SIMULATIONS

2 3

Typical conditions in the ocean mixing layer ¢ = 107" m? s~
= (3 /)Yt ~ 2mm
n=0/e) O="2n04
u
T = (v/e)/? ~ 35 !
» VU = wmsB ~ 0.3 Rey = 65
up = (ve)'* ~0.5mm/s 106 cells

n > 2(n




FRACTAL CLUSTERING
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FRACTAL CLUSTERING

3.0 ‘:\\g -

D: correlation dimension : ’
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See also Bernhard Mehlig’s talk and his paper

K. Gustavsson, et al. arXiv:1501.02386 [physics.flu-dyn] (2015)




PREDICTION FOR SMALL W (fastorientation)

3.0 WD 4
Dimensionless form of equations for swimmers , g i
dx
— =u(x,t) + P 2.6 -
dp 1 1 Y 24
P ' |
= k— (k- + —w X
o = oy k= (k-P)p] + Jw xp o |
For small W, at first order we have
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D =3 —a(PY) I Fouxon, Phys. Rev. Lett. 108, 134502 (2012).




WHERE DO CeLLS CLUSTER ?

200 y 1 T T
150 | DNS
Sw1mmer.s as tracers transported by a weakly A 100 &/ Gvu, Ju ——
compressible flow v T 50
V.v=0V p=-U0Vi, = ;]
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V 1100
In homogeneous, isotropic turbulence 150 | ;
2 2 . ;
e =v{(Vu)®) = -3v(u,Vu,) 200 P g : ) .
and therefore V2u, > 0 means u, < 0 u

Swimming cells
accumulate in
downwelling
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where u, <0




WITH LARGE ACCELERATIONS
De Lillo et al. Phys. Rev. Lett. 112, 044502 (2014)

Gyrotactic algae should feel inertial forces too!

dX
T —ulX .
= u(X,t) + vsp
dp 1 1
%——%[A—(A'P)P]ﬂL?JXP
A=g—a
Vo
’U()=3I//h, B=?21+6S
. C. augustae
alive dead

t=30 s

t=120 s

t=180 s

t=240 s

r=2 cm
f=5 Hz | t=270s

Experiment in a rotating tank




Accelerations in turbulence

Trapping of particles in small scale vortices
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Biferale, Boffetta, Celani, Devenish, Lanotte, Toschi
Phys. Rev. Lett. 93, 064502 (2004)




WITH LARGE ACCELERATIONS 32
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Typical accelerations in the ocean are not large De Lillo, et al.
enough to observe this effect! Phys. Rev. Lett. 112, 044502 (2014).



WITH LARGE ACCELERATIONS
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effective velocity:
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THIN PHYTOPLANKTON LAYERS

- Thin layers of high phytoplankton concentration.
- Vertical thickness cm to m

- Horizontal size up to km
- Persistence up to days

Some explanations....

a Straining

1 2 t3
0

b Convergent swimming
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Durham and Stoker, Annu, Rev. Marine Sci. 4, 177 (2012)



GYROTACTIC TRAPPING IN SHEAR FLOWS

W.M. Durham, J.O. Kessler and R. Stocker, Science 323, 1067 (2009)

One possible explanation for
the formation of layers at the
bottom of the mixed layer,
where vertical shear is present.

Trapping in a shear u = (u(z),0,0) Thin layers of Heterosigna akashivo
Equation for the angle 0 — l(w _ B
2
N
/ s ZU
’ Z Bw<1 L LI
9@ p¥e
ISI>Scr
» (@ (& ‘@)
u(z o -
u(z) o : = sc,m‘\ " .
no equilibrium... S=ouldz | — mg u(z) ’“&

equilibrium direction

sin 0.y, = Bw




GYROTACTIC TRAPPING IN SHEAR FLOWS

W.M. Durham, J.O. Kessler and R. Stocker, Science 323, 1067 (2009)

One possible explanation for
the formation of layers at the
bottom of the mixed layer,
where vertical shear is present.

Trapping in a shear wu = (u(2),0,0) Thin layers of Heterosigna akashivo
i 1 .
Equation for the angle 0 — _(w — B lgin 9) w = du(?)

Bw<1

U(Z) C. rehinartii
u(z)

no equilibrium...

-

equilibrium direction

sin 0.y, = Bw

Lab experiments H. akashiwo
by Durham et al.(2009)




WHAT ABOUT TURBULENCE?

z
KOLMOGOROV FLOW 4 ;
g ) /
Navier-Stokes equations for incompressible velocity field u :/ o
-
&gui —+ ujﬁjui = —8ZP -+ V(?QUi + g; 7 =
/ —
Kolmogorov body force: ¢; = 0; 1F cos 2 { —
\
Stationary solution: |U; = 6; 1 Ug cos (Z/L) > \"q
-P\ S
_ . . - q: — \
For Re = UL/v > /2 the laminar solution is linearly unstable \
For Re > /2 the flow becomes turbulent: DN are necessary. X
y

Why this flow?
because it is the simplest periodic shear flow
because the mean profile of the turbulent flow is still a cosine

G. L. Sivashinsky, Physica D (1985)
Musacchio and Boffetta, Physical Review E (2014)



SWIMMERS IN LAMINAR KOLMOGOROV FLOW

Santamaria et al., Phys Fluids 26, 111901 (2014).

Z’ = Pp In analogy with the constant shear case
Zl 1 we could expect

Py = ———DPzP>» — =SINZ p, quasi-equilibrium solutions
A 2 U < 1 with p = 0 exist for all Z,

b, = 1 —_p,p swimmers can escape

y — yPz
12\11 1 for some Z rotation due to
S = (1 —p2 Z4in 7 U > 1 shear dominates, swimmers
Pz N ( pz> T 2 P are trapped

[ = — — = =

C(p, Z) = p,e?/ D)
| T (200 i
cos 4 —sin /4
m 1+ 492¥
If a swimmer is not trapped, Z is not limited, py — 0
The system becomes 2D.

: 0 =G(Z)0zH G(Z):inverse integrating factor
0 = 2‘11 cos 6 + —SmZ

. . Z = —G(Z)(%H A Zottl, H Stark, PRL (2012)
Z = ®sinb z for a similar approach for prolate cells

G (Z ) — e 2%7 in Poiseuille flow



SWIMMERS IN LAMINAR KOLMOGOROV FLOW

Conservation of 7 implies that for
large Z (untrapped swimmers)

U (20W cos Z — sin 2)
1 4 4022

Pz =

1
This definesa ¢, = 5

solutions for

PP gog, -1 49?)”

1/2

D> P, solutions for any

H(p,Z) — @em Pz —

Z

U (20W cos Z — sin 7))

1+ 4922

\Il

trapping

partial trapping

swimming number
O = Ug / U 0
U = BU,/L

stability number
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SWIMMERS IN TURBULENT KOLMOGOROV FLOW

Santamaria et al., Phys Fluids 26, 111901 (2014).
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DENSITY PROFILES
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HOW LONG DO LAYERS LAST?

0.8 -
Exit time: time to swim half a period 0.6
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CONCLUSIONS

- We consider a simple model for gyrotaxis
- We studied the effects of turbulence on small scale patchiness and on the formation
of thin phytoplankton layers

- Indications that turbulence can induce small scale clustering of swimming algae
- Gyrotactic algae tend to cluster on downwelling regions
- Clustering controlled by the orientation time
- Effects of fluid acceleration can be dramatic...but not in the ocean
Durham, et al. Nature Comm. 4, 2148 (2013).
De Lillo, et al. Phys. Rev. Lett. 112, 044502 (2014).
- Analytical conditions for the formation of TLs in laminar Kolmogorov flow can be
derived
- Turbulence causes layers to dissolve in a finite time. We discussed some estimates
of the lifetime of layers, with the correct orders of magnitude.

Santamaria et al., Phys Fluids 26, 111901 (2014).
Gree! O

...and thanks to Chlamy!









Accumulation index

Another measure of clustering: the deviation from a Poisson distribution

10’

100 ¢

10 | ' 1 '
1072 107 10° 10" 10 o= ((n?) — (n)?)"?
P

N is related to the fractal dimension indeed if 3-D, <<1 one can show that

N B~ 022) (12 (LTB>

Dubrulle and Lachiéze-Rey A&A (1994)



A turbulence primer....

What we mean by turbulence (your neighbour might give a

different definition): Re — @
-a solugon of the Navier-Stokes equation at large Re 14
u
E+u-Vu= ~Vp+vViu + f
-“more than chaotic”: many active scales
Ek) , U ’u,% Energy flux across scales
€= I ? constant in the inertial range

dissipative scale
(Kolmogorov’s scale)

U typical velocity at scale n
Tn typical eddy-turn-over time at scale n

1 1
INJECTION DISSIPATION ~ K (1/3> o = (_) :
n={(—]

Important for what follows: small scales are determined ¢

by Vand €only! 1/4

un = (ve)



