

Superclustering of inertial particles in turbulence

Mickaël Bourgoin, Martin Obligado

Tracer particles vs. Inertial particles

Tracers behave as fluid particles

PIV, LDV, PTV, etc.

Inertial particles do not follow exactly the flow

Wood, Hwang & Eaton. 2005

« material particles » Ex: water droplets in air

Stokes number

$$St = au_p / au_k$$
 $au_p = rac{d^2
ho_p /
ho_f}{18
u_f}$
 $au_k = (
u_f / \epsilon)^{1/2}$

Preferential concentration of inertial particles

A striking feature: inertial particles experience preferential concentration

Aliseda, Cartellier, Hainaux & Lasheras. JFM, 468 (2002)

Wang & Maxey, JFM 1993

Goto & Vassilicos, PRL 100 (2008)

Relevant issues:

- impact on collision efficiency
- impact on settling velocity enhancement
- Collective dynamics
- Etc.

Possible interpretation:

• Dissipative dynamics of inertial particles Mehlig & Wilkinson, PRL 92 (2004) and others

(role of high strain-low vorticity points)

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{1}{\tau_p} \left(\vec{u} - \vec{v} \right)$$

- Some known properties
- Maximum for Stokes number around 1
- Clusters typical size of order 10 η
- Fractal cluster geometry

 Sweep-stick mechanism (role of Zero acceleration points) Goto & Vassilicos, PRL 100 (2008)

Centrifugal expulsion from eddies

Do clusters clusterize ? (Super-clustering)

Experimental setup

Obligado et al., JoT 2014

Turbulent velocity spectrum

R_{λ}	U (m/s)	L (cm)	η (μ m)	$\epsilon \ (m^3 s^{-3})$	St
234	3.4	13.0	280	.69	2.1
264	4.0	13.2	240	1.2	3.3
295	4.8	13.5	208	2.0	4.3
331	5.7	13.8	178	3.4	5.8
357	6.4	14.0	160	4.7	6.6
400	7.6	14.3	140	7.7	9.9

Note : here R_{λ} and St are equivalent $St = (d/\eta)^2 (1 + 2\rho_p/\rho_f)/36$

Size distribution

Experimental setup

Obligado et al., JoT 2014

Turbulent velocity spectrum

R_{λ}	U (m/s)	L (cm)	η (μ m)	$\epsilon \ (m^3 s^{-3})$	St
234	3.4	13.0	280	.69	2.1
264	4.0	13.2	240	1.2	3.3
295	4.8	13.5	208	2.0	4.3
331	5.7	13.8	178	3.4	5.8
357	6.4	14.0	160	4.7	6.6
400	7.6	14.3	140	7.7	9.9

Note : here R_{λ} and St are equivalent $St = (d/\eta)^2 (1 + 2\rho_p/\rho_f)/36$

Size distribution

Quantifying clustering with Voronoï tessellation Voronoï Tesselation

- Local concentration is estimated at an intrinsic length scale $C_{\text{loc}} = A^{-1}$
- Both global and local (multi-scale) information.
- Allow cluster identification and characterization.
- Easily ported to Lagrangian framework (tracking of Voronoï cells).

Quantifying clustering with Voronoï tessellation

Voronoï Tesselation - some known properties

Random Poisson Process (RPP)

• No known analytical form of the PDF of A for a RPP, but it is well approximated by Gamma function.

•
$$\sigma_{\mathcal{V}}^{\text{RPP}} = \sqrt{\langle \mathcal{V}^2 \rangle_{\text{RPP}} - 1} \simeq 0.53$$

Clusters definition Voronoï Analysis

Monchaux et al., PoF 2010 Monchaux et al., IJMF 2012 Tagawa et al., JFM 2012 Obligado et al., JoT 2014

Clusters definition Voronoï Analysis

Monchaux et al., PoF 2010 Monchaux et al., IJMF 2012 Tagawa et al., JFM 2012 Obligado et al., JoT 2014

Clusters definition Voronoï Analysis

Monchaux et al., PoF 2010 Monchaux et al., IJMF 2012 Tagawa et al., JFM 2012 Obligado et al., JoT 2014

Statistics of Voronoï areas

Clusters geometry

Some known properties

- Maximum for Stokes number around 1
- Clusters typical size of order 10 η
- Fractal cluster geometry

Taylor hypothesis applied to high speed imaging Reconstruction of large scale fields

We can reconstruct a large scale field and apply Voronoï Tesselation :

Validation of Taylor hypothesis

Voronoï analysis of particles centers

Statistics of Voronoï areas reconstructed using the Taylor hypothesis are identical than the statistics obtained with the classical image per image analysis

Evidence of Super-Clustering

Voronoï analysis of cluster centers

Super-clustering !

Log-normal Super-clustering (Similar behavior as particle clusters)

Super-Clustering is less pronounced than clustering

Super-clusters identification

Super-clusters

10

Re,=400, St=9.9

 \mathcal{V}^{10^0}

RPP

10

10

Super-clusters geometry

Take Home messages

• Inertial particles in turbulence tend to segregate in clusters

- Lognormal distribution of Voronoï areas
- Maximum of clustering for St~1
- Fractal geometry
- Typical size ~ 10 η

• Clusters of inertial particles tend to segregate in super-clusters

- Lognormal distribution of Voronoï areas
- Clustering less pronounced than for particles themselves
- Fractal geometry
- Typical size ~ 50 100 η , increases with St (or Reynolds)
- Perspectives
 - Disentangle trends with St and Reynolds ?
 - Dynamical aspects of clusters and super-clusters ?
 - Hyper-clusters ?

Thank you !