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Tracer particles vs. Inertial particles

Tracers behave as fluid particles

PIV, LDV, PTV, etc.

Inertial particles do not follow exactly the flow
« material particles »

Ex: water droplets in air

Wood, Hwang & Eaton. 2005
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Preferential concentration of inertial particles

Relevant issues: 
• impact on collision efficiency 
• impact on settling velocity enhancement 
• Collective dynamics 
•  Etc. 

Aliseda, Cartellier, Hainaux & Lasheras. JFM, 
468 (2002)

A striking feature:  inertial particles experience preferential concentration

Possible interpretation:


•  Centrifugal expulsion from eddies
(role of high strain-low vorticity points)

Goto & Vassilicos, PRL 100 (2008)

Some known properties

•  Maximum for Stokes number around 1


• Clusters typical size of order 10 η


• Fractal cluster geometry

Do clusters clusterize ? (Super-clustering)

Wang & Maxey, JFM 1993

Mehlig & Wilkinson, PRL 92 (2004) and others
• Dissipative dynamics of inertial particles d~v

dt
=

1
⌧p

(~u� ~v)

•  Sweep-stick  mechanism

(role of Zero acceleration points)
Goto & Vassilicos, PRL 100 (2008)



Experimental setup

yyz
x

U

mean flow
direction

Phantom V12
high-speed

camera

L = 75 cm

L = 75 cm

Laser
sheet

Active 
grid

Note : here      and St are equivalent 

Turbulent velocity spectrum

-5/3

Size distribution

Obligado et al., JoT 2014



Experimental setup

yyz
x

U

mean flow
direction

Phantom V12
high-speed

camera

L = 75 cm

L = 75 cm

Laser
sheet

Active 
grid

Note : here      and St are equivalent 

Turbulent velocity spectrum

-5/3

Size distribution

Obligado et al., JoT 2014



10 20 30 40 50

40

50

60

70

x (mm)

y 
(m

m
)

100 200 300 400

400

500

600

700

x (pixels)

y 
(p

ix
el

s)

)��%��������	�������������

>�����?	�������������

�*�������;!��,������
����	������������
4����	�������������	�������
����������	��	�����	
��������	�����
����,	�������	�����%�������
����,	���
����	��������
��	�����������	���������

Quantifying clustering with Voronoï tessellation 
Voronoï Tesselation

• Local concentration is estimated at an intrinsic length scale 

• Both global and local (multi-scale) information.

• Easily ported to Lagrangian framework (tracking of Voronoï cells).

• Allow cluster identification and characterization.



Test de l’aléa : 
Il me reste quelques doutes sur les distributions aléatoires. Notamment en lien avec le fait que 
les rapports entre PDF aléatoires et PDF de manips font apparaître qu’il y a davantage de 
surconcentration à toute petite échelle dans l’aléa que dans les manips, ce qui paraît pour le 
moins contre intuitif. 
A la lecture des articles mathématiques sur les Voronoï des distributions de Poisson, nous 
avons deux tests pour notre distribution aléatoire. Le premier a été passé avec succès (valeur 
de la rms relative à l’aire moyenne fixée), le deuxième, plus incertain car basé sur des 
résultats issus de simulations et non de calculs exact est lié à la forme des PDF. Dans la 
littérature que j’ai exploré, plusieurs formes ont été proposées pour la PDF des aires de 
Voronoï à partir de distributions Gamma à deux ou trois paramètres ainsi qu’une forme 
simple par Ferenc et al en 2007. Nous testons les trois et obtenons des résultats comparables à 
ceux des auteurs cités. La différence majeure vient du manque de convergence à grande aire 
de notre test ce qui est logique étant donné que nous avons travaillé avec des fenêtres plus 
petites que les auteurs cités ici. 
Notons, en rapport avec le problème qui nous préoccupe, qu’aux petites aires, notre 
distribution aléatoire est très proche de celle de Ferenc ainsi que du fit en gamma. 
 

 

 

Normalized Voronoï area
Average Voronoï area does not 
carry any structural information

• No known analytical form of the PDF of A for a RPP, but it is well approximated by  Gamma function. 

•

4

triplets (Rλ, St, C0) have been explored in order to in-
vestigate systematic effects on preferential concentration
phenomenon. [In this study we focus mainly on the
influence of St and C0.]

B. Acquisitions and post-processing

Acquisitions are performed using a Phantom V12
high speed camera operated at 10 kHz and acquiring
12bits images at a resolution of 1280 pixels × 488 pixels
corresponding to a 125 mm (along x)× 45 mm (along
y) visualization window on the axis of the wind tunnel
(covering slightly less than an integral scale in the
vertical y direction and almost two integral scales in the
streamwise x direction), located 2.95 m downstream the
grid. The camera is mounted with a 105 mm macro
Nikon lens opening at f/D = 2.8. An 8 W pulsed copper
Laser synchronized with the camera is used to generate
a 2 mm (i.e. 3-4η) thick light sheet illuminating the
field of view in the stream-wise direction. The camera
is orientated with a 50◦ forward scattering observation
angle with respect to the laser sheet to increase the light
budget. The resulting deformations are compensated
by a Scheimpflug mount. Each experiment consists in a
0.9 s acquisition of 9000 images (corresponding to the
available on board memory storage of the camera) at
fixed wind velocity, water rate and air pressure in the
injectors. Particles are identified on the recorded images
as local maxima with intensity higher than a prescribed
threshold. As a consistency test, we have checked that
changing the threshold around the selected value does
not impact significantly the number of particles found.
Sub-pixel accuracy detection is obtained by locating the
particles at the center of mass of the pixels surrounding
the local maxima.

As already mentionned, our aim is to study particles
concentration fields in order to quantify preferential con-
centration effects and to identify particles clusters if any.
Usual approaches to do this consider the pair correla-
tion function to quantify preferential concentration ef-
fects while a box counting method is preferred to access
local concentration fields. We propose to use a single tool
to tackle simultaneously these two problems: the Voronöı
diagrams. Such a Voronöı diagram is the unique decom-
position of 2D space into independent cells associated to
each particle. One Voronöı cell is defined as the ensemble
of points that are closer to a particle than to any other.
Use of Voronöı diagrams is very classical to study gran-
ular systems and has also been used to identify galaxies
clusters. Voronöı diagrams computation is very efficient
(we use Matlab algorithm) with the typical number of
particles per image (up to several thousands) we have
to process. Figures 3a&b show a raw acquired image as
well as the located particles and the associated Voronöı
diagram.

III. PREFERENTIAL CONCENTRATION EVIDENCE
AND QUANTIFICATION

A. Voronöı diagrams: properties and advantages

Why using Voronöı tessellations? From the def-
inition of the Voronöı diagrams, it appears that the
area A of a Voronöı cell is the inverse of the local 2D-
concentration of particles ; therefore the investigation
of Voronöı areas field is strictly equivalent to that of
local concentration field. We recall that usually local
concentration fields are obtained through box counting
methods1 which shows several disadvantages: they are
computationally inefficient and they require to select an
arbitrary length scale (the box size), whereas in Voronöı
diagrams computation, no length scale is a priori cho-
sen and the resulting local concentration field is obtained
at an intrinsic resolution. Similarly, the pair correla-
tion function only gives global (non local) information
and is also associated to the choice of a length scale
that spans the whole values of interest increasing dread-
fully the computation time. Finally, another interest of
Voronöı diagrams is that as each individual cell is associ-
ated to a given particle at each time step, thus tracking in
a Lagrangian frame the particles directly gives access to
the Lagrangian dynamics of the concentration field itself
along particles trajectories. Though we will not discuss
such Lagrangian aspects in this article, they represent an
important opening which will be addressed in forthcom-
ing studies.
Some relevant properties of Voronöı diagrams:

Whatever the measurement and data analysis technique
used, when one refers to preferential concentration, it is
implicitly assumed that one deals with statistical prefer-
ential concentration compared to the case where particles
would be spatially distributed as a random Poisson pro-
cess (RPP). In order to quantify preferential concentra-
tion, we therefore compare for each experiment the Prob-
ability Density Function (PDF) of the measured Voronöı
areas to that expected for a RPP. Main known proper-
ties of Voronöı diagrams associated to RPP can be found
in a short review by Ferenc and collaborators7 and refer-
ences herein. The first moment of Voronöı areas PDF has
nothing to do with the spatial organization of the par-
ticles since the average Voronöı area, A, is always iden-
tical to the mean particles concentration. Therefore, in
the sequel we will generally focus on the distribution of
the normalized Voronöı area V = A/A which is of unit
mean. The only known exact result for RPP Voronöı ar-
eas statistics concerns the second order moment in the 2D
case which is equal to < V2 >RPP= 1.280, corresponding
to a standard deviation σRPP

V =
√

< V2 >RPP −1 ≃ 0.53.
Regarding the shape of the PDF of Voronöı areas statis-
tics for a RPP, no analytical solution is known (most of
the authors fit them with Gamma distributions). Ferenc
and collaborators propose a compact analytical expres-
sion involving the space dimension as a single parameter:
we use this analytical expression as a RPP reference.

Random Poisson Process (RPP)

 A = C0-1  V = A / A  

Quantifying clustering with Voronoï tessellation 
Voronoï Tesselation - some known properties



Clusters definition 
Voronoï Analysis

Monchaux et al., PoF 2010
Monchaux et al., IJMF 2012

Obligado et al., JoT 2014
Tagawa et al., JFM 20128
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FIG. 6. A way to identify clusters: (a) Superposition of the Voronöı areas PDF for a typical experiment (Rλ = 85, St = 0.33,
C0 = 500 particles per image) ; 10 continuous lines associated to ten sets of 500 UIVD are represented (dispersion is
negligible) and a RPP (dotted line) ; (b) ratio of the two PDF presented on the left figure. Vertical dash-dotted lines indicates
η2 (left) and L2 (right). (c) colored visualization of clusters (dark grey) and voids (light gray).

typical Stokes number in our experiments as the actual
turbulent dissipation scales (η or τη) might be slightly
smaller than the values reported in Table I due to the
slight turbulence level enhancement from the spray
injection process as described in section II A (measure-
ments in Table I, used for St estimation, were performed
for the carrier flow alone, with particles injectors off,
since accurate measurements of turbulence dissipation
scales cannot be done at present with the sprays on) ;
an increase of the actual turbulence level by 30% (as
typically observed when the nozzles blow only air but no
water is injected) would for instance reduce by a factor 2
the Stokes number estimation, bringing Stpk to a value
closer to 1.

Finally we also note that since our experiments cover
a wide range of particles seeding concentrations, it is
necessary to avoid any possible statistical bias on σV

depending on the number of particles per image which
are processed. Only then σV can be considered to be

an actual quantitative indicator of preferential concen-
tration. For instance experiments with large particles
(large Stokes numbers in figures 5a&b) generally have
less particles per image (typically less than 1000 ppi)
than experiments with smaller particles (which typically
have 3000 − 4000 ppi). To test such a possible bias we
have estimated σV from a set of originally highly loaded
images from which we randomly removed particles.
We have shown that the estimation of σV is extremely
robust and not biased by this subsampling procedure as
it is only reduced by less than 1.5% when up to 80% of
the particles are randomly removed from the images.

As a partial conclusion, we emphasize that Voronöı
analysis allows to robustly quantify preferential concen-
tration with a single scalar quantity (the standard de-
viation of normalized Voronöı areas) which is easily ac-
cessible and efficiently computed. This analysis confirms
the trend of inertial particles to preferentially concentrate
with a maximal effect for particles with Stokes number of

RPP

Inertial particles
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negligible) and a RPP (dotted line) ; (b) ratio of the two PDF presented on the left figure. Vertical dash-dotted lines indicates
η2 (left) and L2 (right). (c) colored visualization of clusters (dark grey) and voids (light gray).

typical Stokes number in our experiments as the actual
turbulent dissipation scales (η or τη) might be slightly
smaller than the values reported in Table I due to the
slight turbulence level enhancement from the spray
injection process as described in section II A (measure-
ments in Table I, used for St estimation, were performed
for the carrier flow alone, with particles injectors off,
since accurate measurements of turbulence dissipation
scales cannot be done at present with the sprays on) ;
an increase of the actual turbulence level by 30% (as
typically observed when the nozzles blow only air but no
water is injected) would for instance reduce by a factor 2
the Stokes number estimation, bringing Stpk to a value
closer to 1.

Finally we also note that since our experiments cover
a wide range of particles seeding concentrations, it is
necessary to avoid any possible statistical bias on σV

depending on the number of particles per image which
are processed. Only then σV can be considered to be

an actual quantitative indicator of preferential concen-
tration. For instance experiments with large particles
(large Stokes numbers in figures 5a&b) generally have
less particles per image (typically less than 1000 ppi)
than experiments with smaller particles (which typically
have 3000 − 4000 ppi). To test such a possible bias we
have estimated σV from a set of originally highly loaded
images from which we randomly removed particles.
We have shown that the estimation of σV is extremely
robust and not biased by this subsampling procedure as
it is only reduced by less than 1.5% when up to 80% of
the particles are randomly removed from the images.

As a partial conclusion, we emphasize that Voronöı
analysis allows to robustly quantify preferential concen-
tration with a single scalar quantity (the standard de-
viation of normalized Voronöı areas) which is easily ac-
cessible and efficiently computed. This analysis confirms
the trend of inertial particles to preferentially concentrate
with a maximal effect for particles with Stokes number of

RPP

Inertial particles



Clusters definition 
Voronoï Analysis
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of clusters exhibits a plateau around 11η. This is in quantitative agreement with the work
by Aliseda and co-workers [4]. Working in passive grid turbulence in a wind tunnel with
Rλ = 75 and using a qualitative inspection they found that poly-dispersed water droplets
form clusters with a typical area of 10η. For the largest Reynolds numbers (and Stokes
numbers) investigated here, we observe an increase of the normalised cluster dimension
(up to 20η for the experiment at Rλ ≃ 400). The present data do not allow to discriminate
whether this increase is a Reynolds number effect or a Stokes number effect. A possible
explanation may be related to the fact that, in terms of Stokes number, the observed
increase occurs above St ! 5, hence above the optimal clustering Stokes number. The
increase of the typical cluster size, may reveal that the decrease of clustering level occurs
via an expansion (and hence a dilution) of the clusters. To better address this question,
further measurements at even larger Reynolds numbers and with the possibility to adjust the
droplets size (in order to vary St and Rλ independently) will be carried in a new campaign of
experiments.

2.3.4. Fractality of clusters

Finally, we investigate the basic fractal properties of clustering by computing the joint
histogram, for all clusters identified in a given experiment (here the experiment at Rλ ≃
300, while the other experimental sets show similar tendencies), of the cluster perimeter
PC and the root square of its area

√
AC . This plot is shown in Figure 9(a). The figure shows

many different tendencies but the fractional behaviour of the exponent evidences the fractal
nature of clusters with the presence of several different populations. Moreover, the almost
continuum range for this exponent (ranging from ∼2 to 3.5) evidences again the extreme
complexity of this structures.

Figure 9. Joint histograms of cluster perimeter and the square root of their area obtained experimen-
tally for particles (a) and numerically for zero-acceleration points (b). Both figures are in logarithmic
scale.
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Some known properties

•  Maximum for Stokes number around 1


• Clusters typical size of order 10 η


• Fractal cluster geometry

298 M. Obligado et al.

Figure 3. (a) Probability distribution of normalised Voronoı̈ area V for experiments at different
Reynolds number and Stokes number. The red dashed line represents a random Poisson process
(RPP) distribution. (b) Probability distribution function, centred and reduced, of log(V) for the same
experiments as in (a). The black dashed line represents a Gaussian distribution.

shows a local maximum of clustering for St ∼ 3–4 (corresponding to the experiment at
Rλ ∼ 300). Although a deeper insight would require to disentangle Stokes and Reynolds
number effects, these trends are consistent with those reported by Monchaux et al. [15]
at lower Reynolds numbers. The overall effect of increasing Rλ (compared to Monchaux
et al. [15]) is clearly to increase the clustering level (quantified by σV ). Hence, if we take
for instance the point at St ≃ 4 (corresponding to Rλ ≃ 300) as a reference, one would
expect that for the evolution of σV as a function of Stokes keeping constant Rλ at 300,

Figure 4. Evolution of the standard deviation of the normalised Voronoı̈ area with Reynolds number.
The arrows indicate how the dashed-line curve is expected to be changed if the Stokes number was
varied keeping Rλ constant around 300 (what corresponds in the present experiment to the point at
St ≃ 4).
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Statistics of Voronoï areas Clusters geometry



Taylor hypothesis applied to high speed imaging 
Reconstruction of large scale fields
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We can reconstruct a large scale field and apply Voronoï Tesselation :

“Linear Camera” reconstruction






Validation of Taylor hypothesis 
Voronoï analysis of particles centers

Statistics of Voronoï areas reconstructed using the Taylor 
hypothesis are identical than the statistics obtained with the 

classical image per image analysis



Evidence of Super-Clustering 
Voronoï analysis of cluster centers

1. Identify clusters of particles from 
Voronoï diagram 2. Find clsuters of mass 3. Voronoï analysis of clusters  

center of mass

Super-Clustering is less pronounced  
than clustering

Log-normal Super-clustering
(Similar behavior as particle clusters)

Super-clustering !



Super-clusters identification

1. Identify clusters of particles from 
Voronoï diagram 2. Find clsuters of mass 3. Voronoï analysis of clusters  

center of mass

Super-clusters

Super 
clusters

Super 
voids



Super-clusters geometry

Super-clusters have a typical size 
~ 50 - 100 η

Super-clusters have 
fractal geometry



Take Home messages

• Inertial particles in turbulence tend to segregate in clusters

• Clusters of inertial particles tend to segregate in super-clusters

–  Lognormal distribution of Voronoï areas 
–  Maximum of clustering for St~1 
–  Fractal geometry 
–  Typical size ~ 10 η

–  Lognormal distribution of Voronoï areas 
–  Clustering less pronounced than for particles themselves 
–  Fractal geometry 
–  Typical size ~ 50 - 100 η, increases with St (or Reynolds)

• Perspectives 
– Disentangle trends with St and Reynolds ? 
– Dynamical aspects of clusters and super-clusters ? 
– Hyper-clusters ?

Thank you !


