
Phase transition in polar active fluids 

F. BONELLI, A. TIRIBOCCHI, G. GONNELLA, D. MARENDUZZO 

Flowing Matter Across the Scales 
Istituto Nazionale di Studi Romani, Roma, March 24-27, 2015 



ACTIVE FLUIDS 

Orientational order in a suspension of active particles 

1. Elsen Tjhung, Phenomenology and Simulations of Active Fluids, PhD thesis, 2013 

Schematic of a single bacterium suspended in a fluid solvent 

Forces acting on a bacterium Forces acting on the surrounding 
fluid by the bacterium 

Bacterial suspension;  
Wensinka et al. PNAS, 4, 2012, 109, 36 

 

polar order in a sardine school 



CONTINUUM MODEL 
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Leslie–Ericksen theory of nematic liquid crystals 

free energy functional 

    and     are the symmetric and anti-symmetric part of the velocity gradient tensor,       is a relaxational constant 
related to the rotational viscosity of the liquid crystalline fluid and        is related to the geometry of the 
swimmers, i.e.             for rod-like molecules and             for oblate molecules  
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 Incompressible Navier-Stokes equations 
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active stress due to the permanent force dipole in each particle.  

Two dynamical fields: velocity u, polarization P 

2.P. G. de Gennes and J. Prost. The Physics of Liquid Crystals. Clarendon Press,1993. 

3. Y. Hatwalne, S. Ramaswamy, M. Rao and R. A. Simha, Phys. Rev. Lett., 2004, 92, 118101. 



RESULTS 
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parameters values: 

non-slip walls are defined at z=0 and z=L with strong anchoring conditions for the polarization 
field              , whereas periodic boundaries are defined at y=0 and y=L  ŷP
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system size=30x30 

4. E. Tjhung, M. E. Cates and D. Marenduzzo Nonequilibrium steady states in polar active fluids. Soft Matter, 2011, 7, 7453 

quasi two-dimensional geometry [4]  
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amplitude of deformation which characterizes the 
spontaneous flow transition 

4. E. Tjhung, M. E. Cates and D. Marenduzzo, Nonequilibrium steady states in polar active fluids. Soft Matter, 2011, 7, 7453 

One obvious solution of the governing equations is the no-flow or rest state 

  yt ˆ, rP   0, tru

However, at higher activities (above some critical value) the rest state becomes linearly unstable and 
the system undergoes a spontaneous flow transition 

Amplitude of deformation as a function of the 
activity. The plot shows three distinct steady states 
separated by three critical points. Below the first 
critical point, the rest state is stable. However past 
this threshold there is a flow transition and three 
different steady state (SS) can be identified. 
For higher activity, the unstable system becomes 
oscillatory or even chaotic 



SS1 

Steady state polarization field (left) and fluid velocity (right). The out-of planes components may 
dominate the in-plane ones. For instance, typically the out-of-plane velocity is 2-3 orders of 
magnitude larger then the in-plane ones. 



RESULTS WITH A NEW PHENOMENOLOGICAL TERM  
In order to force the alignment between polarization and velocity vector a new phenomenological term, 
proportional to u, was introduced in the evolution equation of the polar vector, which becomes 
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Simulations were performed by fixing     and varying C. Here, the results with periodic condition (PBC) on 
all the boundaries are shown. The initial conditions are P(r,0)=random and u(r,0)=0 



mean cosϴ as a function of C, where ϴ is the angle between the vector u and P 
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Parameters: 
system size=35x35 

shakers 



RESULTS WITH PBC 
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RESULTS WITH WALLS 

non-slip walls at z=0 and z=L with strong anchoring conditions for the polarization field  ŷP

mean cosϴ as a function of C, where ϴ is the angle between the vector u and P 
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SUMMARY 

Polar active fluids studied by using a coarse-grained continuum model 

Spontaneous flow transition in a quasi-2-dimensional geometry  

New phenomenological term to force the alignment between polarization and 
velocity vector 

the system with PBC shows a continuous transition to aligned configurations 

three distinct steady states 

for higher activity the system becomes oscillatory or even chaotic 

large out-of-plane components  

the system with WALLS shows an unstable behavior and it becomes oscillatory or 
even chaotic by increasing C 


