Jérémie Bec
Laboratoire J.-L. Lagrange
CNRS, Observatoire de la Côte d'Azur, Nice, France

Rapid growth of large aggregates by correlated successive coalescences

joint work with
Holger Homann (OCA Nice, France)
Samriddhi Sankar Ray (TIFR/ICTS, Bangalore, India)
Ewe Wei Saw (CEA Saclay, France)

Growth by coalescences

Planet formation

In both cases: very dilute solid particles suspended in a turbulent gas Initially: almost mono-disperse size distribution
monomers with mass $\approx m_{1}$

Coagulation kinetics

Standard approach: Smoluchowski kinetics:

$$
i m_{1}+j m_{1} \xrightarrow{\mathcal{K}_{i, j}}(i+j) m_{1}
$$

$\mathcal{K}_{i, j}$: collision kernel between particles with masses i and j

$$
\frac{\mathrm{d}}{\mathrm{~d} t} N_{i}=\frac{1}{2} \sum_{j=1}^{i-1} \mathcal{K}_{j, i-j} N_{j} N_{i-j}-\sum_{j=1}^{\infty} \mathcal{K}_{j, i} N_{j} N_{i}
$$

Short times: $N_{1}(t) \approx N_{1}(0)$ and creations are dominant

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} N_{2} & \approx \frac{1}{2} \mathcal{K}_{1,1} N_{1}^{2} \Rightarrow N_{2} \propto t \\
\frac{\mathrm{~d}}{\mathrm{~d} t} N_{3} & \approx \mathcal{K}_{1,2} N_{1} N_{2} \propto t \Rightarrow N_{3} \propto t^{2} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} N_{i} & \approx \frac{1}{2} \sum_{j} \mathcal{K}_{j, i-j} N_{j} N_{i-j} \quad \Rightarrow \quad N_{i} \propto t^{i-1}
\end{aligned}
$$

The exponent does not depend on the kernel

Direct numerical simulations

Heavy inertial (point) particles with an effective size
$\ddot{\boldsymbol{X}}=-\frac{1}{\tau_{\mathrm{p}}}[\dot{\boldsymbol{X}}-\boldsymbol{u}(\boldsymbol{X}, t)]+\boldsymbol{g}$
$\tau_{\mathrm{p}}=\frac{2 \rho_{\mathrm{p}} a^{2}}{9 \nu \rho_{\mathrm{f}}}$

Coalescences upon touching, conserving mass and momentum

Start from a population of monomers with mass m_{1}
Numerics: incomprssible Navier-Stokes pseudo-spectral 20483 ($R_{\lambda} \approx 460$) initially 10^{9} particles $a_{1} \approx \eta / 10 \quad(S t \approx 0.1$ - weak inertia)

Very dilute: volume fraction $\Phi_{v} \approx 5 \cdot 10^{-5}$ ≈ 1 particle per box of size $10 \eta^{3}$

Short-time growth of large particles

Measured collision rate is not constant
Mean-field kinetics not valid at short times?
\Rightarrow Correlations between collisions?

Data suggests: $N_{i}(t) \propto t^{0.75(i-2)+1}$ at short times
\Rightarrow faster than the expected t^{i-1}

Time evolution of the size distribution

Back to basics:
Exact equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} N_{i}=\frac{1}{2} \sum_{j=1}^{i-1} \phi_{i-j, j}(t)-\sum_{j=1}^{\infty} \phi_{i, j}(t)
$$

$\phi_{i, j}(t) \mathrm{d} t$ average number of collisions $i+j$ in $[t, t+\mathrm{d} t]$
Expression for the collision rate:

$$
\dot{N}_{i}(s) \mathrm{d} s
$$

$$
\begin{aligned}
& \phi_{i, j}(t)=-\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} t} {\left[\log \int_{t}^{\infty} p(\tau, j \mid s, i) \mathrm{d} \tau\right] } \\
& \uparrow \dot{N}_{i}(s) \mathrm{d} s \\
& \text { joint density of the collision time } \tau \\
& \text { and the size } j \text { of the collider }
\end{aligned}
$$

Time to next collision: exponential distribution with non-constant rate $p(\tau, j \mid s, i)=\lambda_{i, j}(\tau, s) \mathrm{e}^{-\int_{s}^{\tau} \lambda_{i, j}\left(\tau^{\prime}, s\right) \mathrm{d} \tau^{\prime}} \Rightarrow \phi_{i, j}(t)=\int_{0}^{t} \lambda_{i, j}(t, s) \dot{N}_{i}(s) \mathrm{d} s$
"Mean-field rate": $\lambda_{i, j}(t, s)=\mathcal{K}_{i, j} N_{j}(t)$
$\Rightarrow \phi_{i, j}(t)=\mathcal{K}_{i, j} N_{j}(t) \int_{0}^{t} \dot{N}_{i}(s)=\mathcal{K}_{i, j} N_{j}(t) N_{i}(t) \quad$ Smoluchowski

Long-range correlated collisions

Probability distribution of particles mean-free times (inter-collision times)

$$
\begin{aligned}
& p(s+\tau, j \mid s, i) \sim \tau^{-\alpha} \mathrm{e}^{-c \tau^{1-\alpha}} \\
& \lambda_{i, j}(t, s) \sim|t-s|^{-\alpha} \quad \alpha \approx 1 / 4
\end{aligned}
$$

Consequences on size evolution:

$$
\begin{aligned}
& \mathcal{K}_{1,1}=\mathrm{const} \quad N_{1}(t) \approx \mathrm{const} \\
& \Rightarrow \dot{N}_{2}=\frac{1}{2} \mathcal{K}_{1,1} N_{1}^{2} \\
& \begin{aligned}
& \frac{\mathrm{d} N_{3}}{\mathrm{~d} t} \simeq \phi_{1,2}=\int_{0}^{t} \dot{N}_{2}(s) \lambda_{1,2}(t, s) \mathrm{d} s \\
& \simeq \frac{1}{2} \mathcal{K}_{1,1} N_{1}^{2} \int_{0}^{t}|t-s|^{-\alpha} \mathrm{d} s \\
& \Rightarrow N_{3}(t) \propto t^{2-\alpha} \\
& \alpha \approx 0.25 \Rightarrow N_{3}(t) \propto t^{1.75}
\end{aligned}
\end{aligned}
$$

$$
\frac{\mathrm{d} N_{i}}{\mathrm{~d} t} \approx \int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} s} N_{i-1}(s) p(t, 1 \mid s, i-1) \mathrm{d} s \quad \Rightarrow \quad N_{i}(t) \propto t^{i-1-\alpha(i-2)}
$$

Dimensional estimates

$p(s+\tau, j \mid s, i) \sim \tau^{-\alpha}$ when $\tau_{\eta} \ll \tau \ll \tau_{L} \Rightarrow$ inertia is negligible
\Rightarrow Purely due to turbulent mixing?
Naive phenomenology for the distribution of inter-collision times:
Assume particles collide with a given probability once they have approached at a distance $\lesssim \eta$

Two contributions:

Number density of particles (3) at distance r :

$$
n(r)=r^{2} N_{1} / L^{3}
$$

Probability that a particle (3) initially at distance r approaches at a distance η from the newly
created (1)+(2):

$$
p(\eta, t \mid r, 0) \sim\left(\frac{\eta}{r}\right)^{2} \frac{1}{t^{3 / 2}} \Psi\left(\frac{r}{t^{3 / 2}}\right)
$$

Approaching rate:

solid angle Richardson scaling

$$
\lambda(t) \propto \int u_{\eta} p(\eta, t \mid r, 0) n(r) \mathrm{d} r \sim \frac{N_{1} \eta^{2} u_{\eta}}{L^{3}} \int \Psi\left(\frac{r}{t^{3 / 2}}\right) \frac{\mathrm{d} r}{t^{3 / 2}}=\text { const }
$$

Anomalies in turbulent mixing

Advection of a passive scalar
$\partial_{t} \theta+\boldsymbol{v} \cdot \nabla \theta=\kappa \nabla^{2} \theta+\Phi$
$\Rightarrow \quad\left\langle\left(\delta_{R} \theta\right)^{q}\right\rangle \sim R^{\zeta_{q}} \quad \leadsto q$-point motion
In our case: three-point motion

Transition probability

$$
p_{3}(R, \eta, t \mid \eta, r, 0) \sim\left(\frac{\eta}{r}\right)^{3-\zeta_{3}} \frac{1}{t^{3}} \Phi\left(\frac{R}{t^{3 / 2}}, \frac{r}{t^{3 / 2}}\right)
$$

compare with 2 for $\zeta_{3}<1$:
approaching events are less
probable when $r / \eta \rightarrow \infty$

Related to "Lagrangian statistical conservation laws"

Bernard, Gawedzki, Kupiainen, J. Stat. Phys. (1997) Shraiman \& Siggia, Nature (2000) Celani \& Vergassola, PRL (2001)

Actual rates

Collision rate: $\lambda(t) \propto \int u_{\eta} p_{3}(R, \eta, t \mid \eta, r, 0) n(r) \mathrm{d} R \mathrm{~d} r$
Again two contributions:

$$
\left\{\begin{array}{l}
n(r)=r^{2} N_{1} / L^{3} \\
(\text { unchanged }) \\
p_{3}(R, \eta, t \mid \eta, r, 0) \sim\left(\frac{\eta}{r}\right)^{3-\zeta_{3}} \frac{1}{t^{3}} \Phi\left(\frac{R}{t^{3 / 2}}, \frac{r}{t^{3 / 2}}\right) \\
(\text { enhanced for small } r)
\end{array}\right.
$$

$$
\begin{aligned}
& \lambda(t) \propto \frac{1}{t^{3}} \int r^{\zeta_{3}-1} \Phi\left(\frac{R}{t^{3 / 2}}, \frac{r}{t^{3 / 2}}\right) \mathrm{d} R \mathrm{~d} r \propto t^{\frac{3}{2}\left(\zeta_{3}-1\right)} \\
& \zeta_{3} \approx 0.82 \Rightarrow \alpha=\frac{3}{2}\left(1-\zeta_{3}\right) \approx 0.27 \quad \Rightarrow \quad N_{i}(t) \propto t^{0.73(i-2)+1}
\end{aligned}
$$

Summary

Kinetic approaches for coagulation fails at short times

- As a consequence, the number of large particles grows as $N_{i}(t) \propto t^{0.75 i}$ and not t^{i}

B "Rapid" successive collisions/reactions are correlated (mean-field breaks) when they involve inertial-range physics. This is a purely turbulent-mixing effect
© Can one modify kinetic models (via multiple collisions) to account for that?

