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Growth by coalescences

Time-evolution of the number          of particles with mass        ?

How fast are large 
aggregates/drops 
created?

Ni(t) im1

Initially: almost 
mono-disperse size 
distribution
monomers with mass ⇡ m1

Planet formation Rain initiation

In both cases: very dilute solid particles suspended in a turbulent gas⎧ ⎨ ⎩



Coagulation kinetics
Standard approach: Smoluchowski kinetics:

Short times:                       and creations are dominantN1(t) ⇡ N1(0)
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: collision kernel between particles with masses i and jKi,j

The exponent 
does not depend 
on the kernel



Direct numerical simulations

Start from a population of monomers with mass

Heavy inertial (point) particles 
with an effective size 

Ẍ = � 1

⌧p

h
Ẋ � u(X, t)

i
+ g

⌧p =
2 ⇢p a2

9 ⌫ ⇢f
a1 + a2

(a31 + a32)
1/3 Coalescences upon 

touching, conserving 
mass and momentum

m1

Numerics: incomprssible Navier–Stokes 
pseudo-spectral 20483 (              ) 
initially 109 particles                  
                  (               – weak inertia)

R� ⇡ 460

a1 ⇡ ⌘/10

Very dilute: volume fraction 
�v ⇡ 10

�4 ⇡ 1 particle per box of size 10⌘3

St ⇡ 0.1

�v ⇡ 5 · 10�5
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Data suggests: 
at short times 

⇒ faster than the expected

Short-time growth of large particles

Measured collision rate is not 
constant 
Mean-field kinetics not valid at 
short times? 
⇒ Correlations between collisions?
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Expression for the collision rate:

Time evolution of the size distribution

Exact equation

Ṅi(s) ds

average number of collisions           in�i,j(t) dt [t, t+ dt]i+ j

joint density of the collision time    
and the size    of the colliderj
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Time to next collision: exponential distribution with non-constant rate 
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“Mean-field rate”: 

Smoluchowski) �i,j(t) = Ki,j Nj(t)
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Time τi to next collision (in units of τL)
10-3 10-2 10-1 100 101

P
D
F

10-1

100
slope ≈ −1/4

i = 2
i = 3
i = 4
i = 5

Long-range correlated collisions
Probability distribution of particles mean-free times (inter-collision times)
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Consequences on size evolution:
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Dimensional estimates
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Naive phenomenology for the distribution of inter-collision times:

Number density of particles ③ at distance   : r

⌘

Assume particles collide with a given probability 
once they have approached at a distance

Probability that a particle ③ initially at distance 
approaches at a distance     from the newly 
created ①+②: 
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Two contributions:

not a power law!

p(s+ ⌧, j|s, i) ⇠ ⌧�↵ when                     ⇒ inertia is negligible⌧⌘ ⌧ ⌧ ⌧ ⌧L

⇒ Purely due to turbulent mixing?

Richardson scaling



Anomalies in turbulent mixing

Related to “Lagrangian statistical conservation laws”
Bernard, Gawedzki, Kupiainen, J. Stat. Phys. (1997) 
Shraiman & Siggia, Nature (2000) 
Celani & Vergassola, PRL (2001)

Advection of a passive scalar

In our case: three-point motion

Transition probability
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Actual rates
Collision rate:
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Summary
Kinetic approaches for coagulation fails at short times 

As a consequence, the number of large particles grows 
as                     and not tiNi(t) / t0.75 i

“Rapid” successive collisions/reactions are 
correlated (mean-field breaks) when they 
involve inertial-range physics. This is a 
purely turbulent-mixing effect 

Can one modify kinetic models (via 
multiple collisions) to account for that? 
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